• 强调管理老年人 TBI 的独特挑战,包括与不同临床表型、自然脑老化的生理学、多重用药和合并症相关的因素。 • 从 TBI 幸存者和倡导者的第一人称生活体验角度考虑未满足的研究需求。 • 概述关于老年人 TBI 发病率和患病率的已知信息,并讨论改善人口监测数据捕获和数据共享的机会。 9:00am 欢迎和介绍性发言 Kristine Yaffe,医学博士 - 加州大学旧金山分校 David Reuben,医学博士 - 加州大学洛杉矶分校 9:15pm 为什么老年人的 TBI 有独特的考虑因素 Kristen Dams-O'Connor,博士 - 西奈山伊坎医学院 9:35am 问答 9:45am TBI 恢复和倡导 - 从生活经历看未满足的需求 Cindy Daniel - 国家脑震荡管理中心
Chit 的生物学作用尚未被充分认识,尽管已证实它能水解几丁质,而几丁质是许多昆虫和病原体的结构和功能成分 [2]。在正常个体和 CHIT1 基因外显子 10 突变的患者血浆中发现了 Chit 活性的变化,从而导致无症状的 Chit 活性缺乏 [3, 4]。这种酶缺乏的病理生理意义尚不十分清楚。在正常个体中,Chit 活性已被确定为巨噬细胞活化的标志。事实上,患有伴有显著吞噬细胞活性的慢性疾病的患者,如溶酶体戈谢病和尼曼匹克病 [5]、β-地中海贫血 [6] 或动脉粥样硬化 [7],以及患有急性和慢性寄生虫感染的患者,如疟疾和利什曼病 [8],其血浆中的 Chit 活性均升高。据报道,在戈谢病 [9] 中存在鞘内 Chit 活性的证据,并且初步研究也表明,在一些慢性炎症性神经系统疾病(如中风和多发性硬化症)中也存在这种活性 [10, 11]。在创伤性脑损伤 (TBI) 中,人类和动物研究均报告了鞘内胶质细胞活化、巨噬细胞浸润和细胞因子产生增加 [12, 13]。特别是慢性胶质细胞活化与神经退行性病变的进展有关 [14]。
预测创伤性脑损伤 (TBI) 患者功能结果的最佳方法是神经心理学评估。TBI 研究的指数级增长主要集中在诊断和治疗上。现有文献缺乏兼具学术性和实用性的全面神经心理学综述。为此,我们小组对 TBI 进行了概述,并进行了进一步的探讨,TBI 通常包括定义、类型、严重程度和病理生理学。我们结合了使用特定神经成像技术的原因,以及对 TBI 病例进行的常见神经心理学评估的最新发现及其与结果的关系。此外,我们还提供了表格,概述了不同年龄组的估计恢复轨迹及其风险因素,并涵盖了现象学研究,进一步涵盖了一系列现有的、有前途的认知康复/补救工具。最后,我们强调了当前研究的差距和有益的方向。
可以通过协助或进行实时手术,具有或不具有增强的脉冲血管和脑脊液灌注(CSF)灌注的尸体解剖来学习 cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。可以通过协助或进行实时手术,具有或不具有增强的脉冲血管和脑脊液灌注(CSF)灌注的尸体解剖来学习 cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。 在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。 在其中,为本文选择了77篇文章。 大多数培训计划通常专注于微管外科培训。 在大多数中心缺乏神经内窥镜检查的学习设施。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。 神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。 技能可以从模拟模型或VR转移到尸体进行现场手术。 分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。 尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。 本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。。cadaver解剖可以通过,并练习活动物,死动物模型,合成模型,三维型模型,具有动物,杂种,杂种,杂种,杂物,杂种,cada cada cada型模型(VR)模拟器和混合模拟器(合并的物理模型和VR模型)。神经外科技能实验室具有基础和先进的学习,所有教学医院都应在那里。技能可以从模拟模型或VR转移到尸体进行现场手术。分阶段学习(首先使用简单的模型学习基本的内窥镜技术,然后是动物模型,然后是增强尸体)是首选的学习方法。尽管大多数调查都赞成动物模型和尸体作为现在最喜欢的训练模型的现场手术和实践,但在将来的VR中,VR也可能成为一种受欢迎的学习方法。本文基于我们在10,000多个神经内窥镜手术中的经验,以及来自950多名神经内窥镜研究员的反馈或参加自2010年以来每6个每6个每6个工作店的顾问的反馈。在PubMed和Google Scholar上进行了文献搜索(神经内存)和(学习)和(神经内存镜)和(培训),分别产生了121和213个结果。在其中,为本文选择了77篇文章。大多数培训计划通常专注于微管外科培训。在大多数中心缺乏神经内窥镜检查的学习设施。学习神经镜镜检查与微神经外科有很大不同。从微管外科手术转换为神经内镜镜检查可能具有挑战性。研究生培训中心应具有装备良好的神经副本技能实验室,手术教育课程应包括神经内窥镜培训。学习内窥镜检查是关于该技术的优势,并通过连续训练克服内窥镜检查的局限性。
是孟买塔塔社会科学研究所(TISS)人类生态学学院的副教授。她已经完成了博士学位。来自Tiss,孟买和她的M.Phil。班加罗尔Nimhans的临床心理学中。 她是一位拥有20多年经验的心理治疗师,并且与孩子,青少年,夫妻和家庭合作。 她在硕士课程中教授心理治疗和咨询课程,并监督受训人员和从业者。 她是Rahbar的项目主管,Rahbar是一项旨在促进印度心理健康从业人员培训,监督和专业发展的计划。 她还领导了心理健康倡导的学校倡议(SIMHA),该计划旨在通过倡导,研究和能力建设来促进学校中年轻人的福祉。 她是Apnishala的受托人,该组织致力于使儿童从贫困环境中获得生活技能教育。 她对心理治疗师和辅导员培训,监督和反思性实践有浓厚的兴趣,并进行了研究,并撰写了同一章节和论文。班加罗尔Nimhans的临床心理学中。她是一位拥有20多年经验的心理治疗师,并且与孩子,青少年,夫妻和家庭合作。她在硕士课程中教授心理治疗和咨询课程,并监督受训人员和从业者。她是Rahbar的项目主管,Rahbar是一项旨在促进印度心理健康从业人员培训,监督和专业发展的计划。她还领导了心理健康倡导的学校倡议(SIMHA),该计划旨在通过倡导,研究和能力建设来促进学校中年轻人的福祉。她是Apnishala的受托人,该组织致力于使儿童从贫困环境中获得生活技能教育。她对心理治疗师和辅导员培训,监督和反思性实践有浓厚的兴趣,并进行了研究,并撰写了同一章节和论文。
使用格拉斯哥昏迷量表(GCS)总分具有众所周知的局限性,将创伤性脑损伤(TBI)表征为轻度,中度或重度的常规临床方法,促使人们呼吁采用更复杂的策略来表征TBI。在这里,我们使用项目响应理论(IRT)来开发一种新的方法来量化TBI严重程度,该方法结合了神经影像学和基于血液的生物标志物以及临床指标。在TBI(TRACK-TBI)研究样本(n = 2545)的多中心转化研究和临床知识中,我们表明,一组23套临床,头部计算机断层扫描(CT)和基于血液的生物标志物变量熟悉临床医生和研究人员熟悉的生物标志物变量。我们说明了如何使用IRT来识别这些特征的相对值,以估计个人沿TBI严重性连续体的位置。最后,我们表明,使用这种基于IRT的新方法产生的TBI严重程度得分逐渐预测了经典临床(轻度,中,严重或国际任务)预后和分析TBI(影响)分类方法的临床试验的功能结果。我们的调查结果直接为正在进行的国际努力提供了完善和部署新的务实的,经验上支持TBI的策略,同时说明了一种可能有助于发展其他疾病的分期系统有用的策略。
摘要在健康和营养的背景下,口腔和肠道微生物群之间的复杂相互作用使人们着迷。作为通往胃肠道的门户,口腔微生物群拥有各种各样的微生物物种,这些微生物物种显着影响或有助于各种疾病。与龋齿,牙周疾病和全身性疾病等疾病有关,包括糖尿病,心血管疾病,肥胖症,rheuma- Toid关节炎,阿尔茨海默氏病和结直肠癌。本综述旨在结合口腔和肠道菌群之间细微的关系,探讨饮食在制定健康促进和预防疾病的策略中的关键作用。从涵盖动物和人类的无数研究中汲取见解,我们研究了微生物营养不良及其对健康的影响的含义。从2000年1月至2023年8月,在PubMed Central,Web of Science,Scopus,Google Scholar和沙特数字图书馆进行了78篇科学文章的书目搜索。在严格的筛选过程之后,对选定文章的全文进行了严格审查以提取相关信息。不符合纳入标准的文章(特定于口服 - 肠道菌群相互作用,饮食和营养)被精心排除。饮食是影响口服和肠道菌群的关键参与者。这项全面的评论深入研究了复杂的各种饮食组成部分,例如纤维,益生元,益生菌和生物活性化合物,对这些生态系统中微生物的多样性和功能产生了显着影响。相反,加工食品中高的饮食,添加的糖和饱和脂肪与营养不良相关,口服和胃肠道疾病的风险升高。理解这种相互作用的复杂性对于开发创新方法的发展至关重要,从而促进了平衡的口服 - 肠道菌群轴并改善整体人类健康。的含义扩展到预防和治疗性相互作用,强调了将这些复杂性在公共卫生和临床实践中揭示这些复杂性的实际重要性。
自 2022 年 4 月 1 日起,NC TBI 豁免已获得 CMS 批准,有效期为五年。当前 NC TBI 豁免的第一年有 107 个名额。名额按先到先得的原则发放。Alliance 制定了一份 TBI 豁免兴趣清单,以跟踪和支持对豁免表示兴趣的个人以及那些被确定可能受益于豁免的个人。Alliance 还聘请了一名 TBI 指南工作人员,协助兴趣清单上的个人收集 TBI 豁免护理水平流程所需的临床文件,以确定个人是否符合豁免中概述的护理水平。TBI 指南协助兴趣清单上的个人,如果尚未获得保障,则需要申请医疗补助。续约还包括将受伤日期改为 18 岁及以上,并将联邦贫困水平改为 300% 以获得 TBI 豁免资格。自 2023 年 4 月 1 日起,CMS 批准 NC TBI 豁免扩展到梅克伦堡县和奥兰治县。现在 Alliance 服务的所有六个县都提供该服务。Alliance 已招募并加入了 TBI 豁免提供商,为梅克伦堡县和奥兰治县提供服务。Alliance 正在将 TBI 豁免兴趣名单上并居住在梅克伦堡县和奥兰治县的个人纳入 TBI 豁免。
重返工作岗位的最佳时间取决于您的工作和所遭受的脑损伤类型。一般来说,即使您感觉良好且没有具体问题,也建议您先与您的雇主讨论相关事宜。这通常是因为您的整体精力水平可能会降低,分阶段重返工作岗位可能更明智。您的雇主有责任支持您恢复就业的努力,通常帮助您适应任何新情况符合他们的利益。如果您在重返工作岗位方面遇到困难,大脑慈善机构将提供帮助和支持;他们的电话号码印在本手册的背面。如果需要帮助您重返工作岗位,您的全科医生可能会为您提供职业康复服务。
摘要背景创伤是老年患者发病和死亡的主要原因,其治疗具有挑战性。由于这些患者先前存在的慢性疾病,很难对其进行结果评估,因为可能无法分离出创伤性脑损伤的影响。本研究旨在检查三级护理中心老年创伤性脑损伤患者的临床结果以及流行病学和临床放射学特征。方法本研究纳入了 2016 年至 2020 年期间在乔治国王医科大学接受治疗的 60 岁头部受伤患者的临床记录。患者在门诊或通过电话咨询进行随访。使用患者的格拉斯哥结果评分 (GOS) 更新随访期,以了解当前的神经系统状况和相关的放射学检查。结果受试者的平均年龄为 66.16 6.55 岁。道路交通事故是脑损伤的最常见原因(448 [68.5%])。总体而言,41% 的患者在入院时患有严重头部损伤(格拉斯哥昏迷评分,GCS < 9)。住院死亡率为 25.2%。总体而言,60.7% 的出院患者预后良好(GOS:4 或 5)。入院时的 GCS、最佳运动反应和相关合并症(糖尿病)可显著预测 6 个月后的预后。大多数患者(82.6%)年龄在 60 至 70 岁之间。结论道路交通事故是老年人脑损伤的最常见原因。大多数患者得到了医疗处理,并且大多数患者出院(74.8%)。在出院患者中,39.3% 的患者预后不良。