App-a-thon 于 2024 年 2 月 26 日至 2024 年 4 月 26 日举行。App-a thon 的目标是评估 AutoML 应用于生物医学数据集的有效性。参与者根据他们之前的 ML 经验在两个挑战等级之间进行选择:ML 和高级 ML。ML 等级适用于可能没有太多数据科学经验但希望接触使用 AutoML 工具和生物医学数据的参与者。高级 ML 等级适用于具有数据科学经验并了解 ML 流程中各个步骤(例如数据预处理、特征工程和模型构建)的参与者。这两个等级都使用 AutoML 工具来研究提供的脑癌基因表达数据集。对于高级 ML 等级,参与者收到了额外的美国国家癌症研究所临床蛋白质组学肿瘤分析联盟 (NCI CPTAC) 数据集,如工作流程图所示(图 1)。
循证医学的进步(EBM)迎来了医疗保健的新时代,其特征是创新,尖端技术的整合以及研究和实践中不断发展的趋势。这些进步扩大了EBM的范围和影响,使医疗保健提供者能够提供更具个性化,有效和有效的护理。在此解释中,我们将探索塑造循证医学景观的最新创新和趋势。循证医学中最重要的进步之一是精密医学的出现,这些医学利用基因组学,蛋白质组学和其他OMICS技术来针对个别患者的遗传组成,生活方式因素和疾病特征量身定制医疗治疗。精确医学使医疗保健提供者能够确定最有可能从特定干预措施中受益的患者,从而导致更具针对性和个性化的护理。电子健康记录(EHR),可穿戴设备和其他健康数据源的扩散已经生成了大量数据,可以分析这些数据,以提取有价值的见解,以实现基于证据的决策。大数据分析技术,例如机器学习和自然语言处理,使研究人员和临床医生能够在大规模医疗保健数据集中确定模式,趋势和关联,从而促进发现新颖的干预措施,危险因素和治疗成果。传统的临床试验为受控条件下的医疗干预措施的功效和安全性提供了宝贵的见解。但是,来自观察性研究,注册表和电子健康记录的现实证据(RWE)提供了有关干预措施在常规临床实践中的表现的补充见解。RWE允许医疗保健提供者评估不同患者人群和现实世界中干预措施的有效性,成本效益和比较有效性,从而增强了基于证据的建议的相关性和适用性。共享决策(SDM)已成为基于证据的实践的关键组成部分,强调医疗保健提供者和患者之间的协作讨论,以做出有关治疗选择的明智决定。SDM将最佳可用证据与患者的偏好,价值观和目标集成在一起,以共同创建与患者的个人需求和偏好保持一致的治疗计划,从而提高了患者满意度,依从性和健康结果。远程医疗和数字健康技术的广泛采用彻底改变了医疗服务的提供,实现了远程咨询,监测和干预措施。远程医疗平台,移动健康应用程序和可穿戴设备使患者有能力积极参与他们的护理,访问循证信息,并实时跟踪其健康指标。这些数字健康工具促进了持续监测,对健康问题的早期发现以及及时的干预措施,支持基于证据的决策并改善医疗保健的访问和结果。实施科学专注于通过研究将基于证据的干预措施转化为常规临床护理的方法和策略来弥合研究和实践之间的差距。实施科学框架,例如实施研究的合并框架(CFIR)和RE-AIM框架,提供了系统的方法来评估
在过去的几十年中,宏基因组学方法已经完全更新了我们对微生物多样性的看法,并已成为推动微生物组研究边界的一种令人兴奋的方法。随着我们的前进,我们对微生物的活动和相互作用有疑问,这不能仅依靠宏基因组学来回答。除了了解每个环境中微生物的多样性外,我们还想知道他们在做什么以及它们的代谢产物如何促进生态系统功能和元素循环。因此,我们不可避免地需要结合方法来研究微生物基因组,而且还需要探索它们转录的基因,它们合成的蛋白质和产生的代谢物。
12:30-14:00 午餐(自理) 午餐(自理) 午餐(自理) 午餐(自理) 午餐(自理)
在现代,电能对于人类的生活至关重要。能源价格上涨、化石燃料枯竭和电网不稳定都是令人担忧的情况。因此,需要一个智能解决方案来确保定价和节约自然资源之间的平衡。环境变化、新输电线路安装限制、可靠性问题以及分布式能源发电技术的扩展等其他一些问题有望广泛实施分布式发电。电力系统中两个或多个能源供应的集成称为分布式能源资源系统。在本研究中,以大学校园为例,在考虑上述问题的同时降低能源成本。提出了智能源-负载-存储协调方案,以利用可用的可再生能源和存储系统。使用考虑经济参数的精确方法技术在 MATLAB 中求解所提出的线性模型。考虑到基于物联网 (IoT) 的建筑,尤其是在巴基斯坦的情况下,校园微电网分析并未得到解决。结果表明,所提出的模型是有效的,并且可以作为一种经济的解决方案在现有校园中实施,以实现源-负载-存储协调。
隐私增强技术不仅必须在传播中保护敏感的数据,而且还必须在本地限制。例如,匿名网络隐藏了网络对手的消息的发送者和/或收件人。但是,如果实际捕获了参与设备,则可以向其所有者施加压力以访问存储的对话。因此,客户端软件应允许用户合理地否认存在有意义的数据。由于可以在未经同意和基于服务器的身份验证泄漏元数据的情况下收集生物识别技术,因此实现通常依赖于令人难忘的通行单词进行本地身份验证。传统的基于密码的密钥拉伸缺乏严格的时间保证,因为攻击者的平行密码猜测便利。本文引入了懒惰,这是一种关键拉伸方法,利用现代智能手机中常见的安全元素(SE),以对密码猜测提供严格的速率限制。虽然这将很简单,但可以完全访问SE,但Android和iOS仅提供非常有限的API。懒惰利用现有的开发人员SE API和新颖的加密结构来建立有效的速率限制,以对最近的Android和iOS设备进行密码猜测。我们的方法还可以确保在短,随机生成的,六个字符的alpha数字密码中针对具有几乎无限计算资源的对手。我们的解决方案与大约96%的iPhone兼容,而45%的Android手机和懒惰无缝集成而没有设备或操作系统修改,从而使其立即由App Developers立即使用。我们正式定义了懒惰的安全性并评估其在各种设备上的性能。最后,我们提出了Hiddensloth,这是一种利用懒惰的可能性的加密方案。它为对手提供了多次击打的阻力,这些对手可以多次掩盖其磁盘含量。
在当今的零售生态系统中,重点仍然是使用行为和情境客户数据以及分析和算法来提出建议。这是在客户积极参与有限的情况下发生的,就好像零售商需要猜测,尽管客户希望如此。客户往往需要投入时间和精力来保护自己免受公司收集其数据而向他们发送的无关营销垃圾邮件。但是,当零售商和客户同意合作时,情况就不必如此。零售商可以直接找到来源并让客户透露他们的偏好。因此,让客户自行发布有关其旅行需求和偏好的凭证的想法,以便供应商可以更准确地提供满足这些需求的商品和服务,并使用智能代理“代表客户”并在市场上搜索优惠。
