摘要 由于物流参与方众多、运输需求频繁、对社区影响重大且变化性高,因此在建筑行业中发挥着至关重要的作用。然而,参与方对物流的重要性以及物流如何创造价值的认识不足。本文旨在加深对建筑业物流服务价值共同创造过程的理解。在方法上,本研究采用涉及第三方物流 (TPL) 提供商、主承包商和分包商的访谈。服务蓝图用于可视化建筑物流设置 (CLS) 中的物流服务。研究发现,在像建筑这样的松散耦合系统中,价值共同创造是由信任和承诺驱动的,从而留出了必要的学习时间。服务蓝图有助于可视化服务设计与不同服务模块价值之间的联系。然而,风险包括供应链下游参与者参与延迟以及服务模块之间可能缺乏协调,尤其是在有多个 TPL 提供商的情况下。物流服务文献的一个贡献是模块化使设计服务内容变得更容易;但参与方的数量可能会增加,因此模块化简化了服务内容,但并未简化服务价值创造或价值共创过程。
简介 十一年前,马希尔 (Maher) 问道:“谁在创造?” (Maher 2012),并提出了几个创造性应用的分析空间,包括构思和互动两个维度。马希尔的问题引出了乔丹诺斯 (Jordanous) 的 PPP 视角框架,其中创造行为可以由人类或人工智能 (Jordanous 2016) 执行,以及坎托萨洛 (Kantosalo) 和塔卡拉 (Takala) 的 5C 框架,其中创造行为由人类和人工智能共同组成的集体执行 (Kantosalo and Takala 2020)。1然而,对于人与人工智能互动中创造力的位置,人们的共识较少。混合主动性创造性界面方法提出了一组基本的细粒度活动,这些活动可以由人类或人工智能以某种结构化对话的形式执行(Deterding 等人,2017 年;Spoto 和 Oleynik,2017 年),随后扩展到生成应用(Muller、Weisz 和 Geyer,2020 年),针对特定算法方法进行了改进(Grabe、Duque 和 Zhu,2022 年),并针对其他算法方法进行了批评(Zheng,2023 年)。虽然这些方法生成了重叠的分析动作词汇,但它们并没有解决创造力在何处发生(以及由谁或什么通过这些动作发生)的问题。在这篇短文中,我们提供了对该问题的一个答案的几个例子。我们重新利用 Kantosalo 和 Takala (2020) 的 5C 中的集体概念,提出一种类型的创造力可能会在以下互动空间中不对称地出现 (Rezwana and Maher 2022)
“人工智能会创造宗教吗?”我曾多次被问到这个问题,通常是在我公开介绍我对人工智能和宗教的研究之后,或者在播客期间。我不会试图回答这个问题,因为这超出了人类学的方法范围。在这里,我将探讨网上对这个问题的回答如何告诉我们公众如何看待人工智能、宗教及其关系。然而,网上和其他地方的答案表明了人们对人工智能对宗教影响的共同看法,并与现有的宗教理论相似。当我们讨论宗教理论时,对宗教从何而来的问题大致有两种看法。要么宗教是人为的,从我们的心理和社会过程中产生,有时是故意的,就像“发明的宗教”一样,1 有时不是。或者宗教是神创造的,由超自然力量揭示。后者仍然产生了社会科学研究可以观察到的宗教机构、文化和社会现象。有些有
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
在 2017 年跨部门/行业培训、模拟和教育会议 (I/ITSEC) 上,总结道“大量的训练飞行将耗费大量资金,因此需要更多的模拟”并且“我们需要将模拟提升到前所未有的水平。”
摘要。这项工作旨在强调与在高等教育机构中创建“智能”微电子计算机科学课程相关的问题。创建的“智能”计算机科学教室是一个完全自动化的教育环境,其运行模式为“标准”、“自动”、“自动省电”。 “Samrt”机柜可以通过智能手机、PC 和遥控器进行控制。机柜配备了基于 ArduinoUNO、MEGA 和 ESP8266-12E WiFi 模块的各种传感器、指示器和电子零件。内置“智能”办公室传感器和指示器的测量用于显示有关办公室和教室微气候状态的信息,用于演示演示和实验室工作。智能机柜专为 Iformatics 设计,由三个模块组成:“信息”、“执行”和“演示”,由 ATMEL 微控制器控制。演示模块旨在快速轻松地连接无焊板的各种传感器和组件。Arduino 开放式编程平台。计算机科学教室中的智能传感器可以监控教室内外的环境(温度、湿度、压力、光照水平、空气中的二氧化碳和其他气体水平);并远程控制外围设备:电视、投影仪、灯、电源插座、窗帘。所有三个模块都连接到无线局域网。基于每个模块的无线电通信的“星型”拓扑。系统的主要组件是具有互联网接入、设备、技术和软件工具的执行模块。技术教育机构教育系统的概述解决了以下问题:在高等教育机构中创建“智能”计算机科学教室。
电子游戏行业日新月异,新技术不断涌现,以提升玩家体验。由于近年来技术发展迅速,在游戏中使用人工智能 (AI) 可视为许多游戏公司关注的主要领域之一。尽管与学术研究领域相比,商业电子游戏行业很少应用和使用深度学习等现代人工智能技术,但我们可以看到许多游戏开发者使用人工智能方法来克服游戏中持续存在的动态难度调整 (DDA) 和敌人寻路问题。本文重点研究如何在恐怖游戏中使用人工智能来提升玩家的紧张感,研究恐怖类型中如何创造紧张感和恐惧感、如何在游戏中跟踪和识别玩家情绪,最后提出一个假设的解决方案,该解决方案可用于跟踪玩家情绪,以便在人工智能的帮助下在恐怖游戏中创造紧张感,同时结合玩家的生理反应。本文的研究结果为解决方案系统的可行性以及生理反应在商业视频游戏中的潜在用途以及为实施和测试本文提出的解决方案系统而要做的未来工作提供了参考。
本文提出了ENACTION的认知科学范式,作为共同创造性艺术智能(AI)的理论框架。eNACTION描述了通过在感知过程中与环境的相互作用与环境的相互作用出现的含义。eNACTION与信息处理(IP)认知理论不同,因为它不采用计划,而是精通和定位的含义构建过程。本文认为,可以用作设计,评估和描述共同创造的AI系统的理论基础。描述了五个支柱:自治,感知,实施,出现和经验。每个类别都应用于共同创造的AI,以创建一个描述性框架,以分类和系统地描述共同创造的AI系统。通过文献进行了20个共同创造的AI系统,包括Chatgpt,稳定扩散和Google的双子座。为每个颁发类别提供了设计建议。
