通常很难使用这些指标选择好的胚胎。因此,有必要阐明异常染色体分离的原因并防止异常胚胎的形成。迄今为止,为了研究异常分离的染色体和微核,已经进行了分析,包括使用一个受精卵的一个细胞对基因进行全面分析,以及对用福尔马林固定的受精卵的染色体观察的荧光观察。但是,由于综合细胞基因表达分析无法区分正常和异常的染色体,并且通过荧光观察观察异常的染色体仅允许分析一部分异常染色体,因此无法详细检查异常染色体。因此,在这项研究中,我们开发了一项技术,可以从染色体异常的小鼠2细胞阶段中去除微核,而无需杀死胚胎,并试图分析遗传切除的微核。
沃森表示,尽管爱达荷州是全美经济增长最快的州之一,但农业对爱达荷州整体经济的贡献仍然保持稳定,这一点意义重大。“该州的经济增长非常迅速,农业也跟上了步伐,”他说。“这里的农业并没有像其他州那样衰落。爱达荷州的农业仍在增长。”沃森表示,该报告旨在向立法者和其他人展示农业在爱达荷州的重要作用。爱达荷州农场局联合会主席布莱恩·塞尔表示,该报告确实做到了这一点。“这份报告中包含的数字和数据非常庞大,但对于参与该州农业产业的人来说并不奇怪,”在雪莱经营农场的塞尔说。“爱达荷州的整体经济由该州 22,877 个农场和牧场以及支持它们的相关行业支撑。”
2.4 轿厢控制设备安装 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 2.4.4 LS-QUIK-1 的平层/绝对楼层编码叶片和轿厢顶轮驱动编码器. . . . . . . . . . . . . . . 2-13 2.4.5 TM 开关(如果使用). . . . . . . . . . . . . . . . . . . 2-13 2.4.6 门操作器二极管(如果使用). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... .2-13
上下文。高度不饱和的碳链,包括波利尼斯。随着金牛座分子云-1(TMC-1)的Quijote调查的成功,该社区在检测到的碳链数量中看到了“繁荣”。另一方面,罗塞塔(Rosetta)任务揭示了完全饱和的碳氢化合物,C 3 H 8,C 4 H 10,C 5 H 12,(在特定条件下)C 6 H 14与C 7 H 16的C 6 H 14,从Comet 67p/Churyumov-Gerasimenko中。后两者的检测归因于尘埃泛滥的事件。同样,Hayabusa2 Mission从小行星Ryugu返回的样品的分析表明,Ryugu有机物中存在长期饱和脂肪族链。目标。在类似于分子云的条件下,不饱和碳链的表面化学性质可以在这些独立观察结果之间提供可观的联系。但是,仍缺乏基于实验室的研究来验证这种化学反应。在本研究中,我们的目标是通过在10 K.方法下超高真空条件下的C 2 N H 2(N> 1)Polyynes的表面氢化来验证完全饱和的烃的形成。我们进行了两步实验技术。首先,紫外线(≥121nm)辐照C 2 H 2冰的薄层,以将C 2 H 2的部分转化为较大的Polyynes:C 4 H 2和C 6 H 2。之后,将获得的光处理冰暴露于H原子中,以验证各种饱和烃的形成。结果。除了先前研究的C 2 H 6外,我们的研究证实了较大的烷烃的形成,包括C 4 H 10和(暂时)C 6 H 14。对获得的动力学数据的定性分析表明,鉴于表面温度为10 K,HCCH和HCCCCH三键的氢化以可比的速率进行。这可能发生在乌云阶段的典型时间表上。还提出了通过N-和O-O-bearenty Polyynes的表面氢化形成其他各种脂肪族有机化合物的一般途径。我们还讨论了天文学的含义以及与JWST鉴定烷烃的可能性。
多体量子系统的有限温度阶段是从凝结物理学到宇宙学的现象的基础,但是它们通常很难模拟。使用量子近似优化算法(QAOA)激发的离子陷阱量子计算机和协议,我们通过在多种温度下制备双重双状态来生成横向界面模型(TFIM)的非平凡热量子状态。我们还使用量子 - 古老的杂化型元素在零温度下制备TFIM的临界状态。热场双重和关键状态的纠缠结构在黑洞的研究中起着关键作用,我们的工作模拟了量子计算机上的这种非平凡结构。此外,我们发现变分量子电路表现出噪声阈值,高度最低的QAOA电路可提供最佳结果。
。CC-BY-NC-ND 4.0 国际许可,根据 未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是 由 此预印本的版权持有者(此版本于 2020 年 4 月 20 日发布。 ; https://doi.org/10.1101/2020.04.20.047845 doi: bioRxiv preprint
在现行管理实践下定期评估奶牛的表现对于奶牛生产和杂交育种计划的成功至关重要。然而,缺乏最新、全面和针对具体地点的信息阻碍了实施有效的干预策略以提高热带地区的奶牛生产率。这项研究旨在评估莱莫地区杂交奶牛的繁殖性能、产奶量和质量。共调查了 178 户家庭,并收集了 53 个牛奶样本进行实验室分析。结果表明,牛蒡叶和假茎、牧草和谷物作物残渣是主要饲料资源。育种方法包括 50% 的公牛配种和 33% 的人工授精 (AI)。杂交奶牛的平均日产奶量为 7.1±1.27 升/天。产奶量因农业生态、收入来源、经验、培训、饲料补充剂、供水和土地持有而存在显著差异 (p<0.05)。平均初配年龄和初产年龄分别为 27.58±2.14 个月和 36.65±2.70 个月。平均产犊间隔为 17.36±0.93 个月,超出推荐范围。脂肪、蛋白质、SNF、乳糖和总固体的平均值分别为 4.46±1.98、3.21±0.20、8.85±0.5、4.9±0.38 和 13.29±1.8。不同奶牛基因型的牛奶成分质量差异显著(p<0.05),符合埃塞俄比亚最低标准。建议为奶牛生产者提供一项以改进育种方法和提供能力建设培训为重点的小农奶牛项目。
卡尔德代尔已将“良好开端”确定为我们 2022-2027 年福祉战略的四个重点领域之一。我们的首要任务是让每个孩子都有最好的人生开端,让所有孩子都做好上学的准备,并缩小最有可能无法实现教育和健康目标的群体之间的差距。做好上学的准备可以让孩子做好学习、发展人际关系、知道如何表现、茁壮成长并最终发挥他们的潜力,过上更美好的生活。要取得成功,这一战略必须惠及并改善该区每个婴儿和儿童的生活机会,特别是那些弱势群体或有额外教育或健康需求的儿童。它需要加强对保护儿童免受伤害的关注,并解决因我们居住地、性别、种族、社会环境以及我们是否有额外支持需求而导致的结果差异。