摘要:本研究旨在解决有源配电网(ADN)不稳定能源接入问题,包括频率调节困难、ADN 电压偏差增大、运行安全性和稳定性下降等。本研究建立了一个两阶段主要化配置模型来识别和理解波动性能源如何影响混合储能系统(HESS)。利用风能、太阳能和负荷的日预报数据来检查带有铅酸电池和超级电容器(SC)的 ADN 和 HESS。在这个规划阶段,综合成本、网络损耗和节点电压偏差被视为多目标优化模型中的最优目标,而改进的多目标优化粒子群方法用于求解容量配置的初始值。在运行阶段,以风电输出功率波动、HESS频率偏差等优化目标求解SC配置能力修正值,并利用加入混沌机制的量子粒子群算法对ADN中不同类型机组的输出进行进一步优化,基于案例33个节点实例进行仿真研究,确定最佳配置结果,仿真结果验证了模型的可行性。
摘要:阳极死区(DEA)和阳极再循环操作通常用于提高汽车质子交换膜(PEM)燃料电池的氢气利用率。由于阳极中的氮交叉和液态水积聚,电池性能会随着时间的推移而下降。高效预测PEM燃料电池的短期降解行为具有重要意义。在本文中,我们提出了一种基于多元多项式回归(MPR)和人工神经网络(ANN)的数据驱动降解预测方法。该方法首先预测电池性能的初始值,然后预测电池性能随时间的变化以描述PEM燃料电池的降解行为。使用PEM燃料电池在DEA和阳极再循环模式下的两种降解数据案例来训练模型并证明所提方法的有效性。结果表明,该方法预测的平均相对误差比仅使用ANN或MPR预测的平均相对误差小得多。两隐层ANN的预测性能明显优于单隐层ANN。使用S形激活函数预测的性能曲线比使用整流线性单元(ReLU)激活函数预测的性能曲线更平滑,更逼真。
摘要 - 使用AUSONSOPOUS车辆(AVS)的安全保证方法,通过将AVED测试放在具有挑战性的交通方案中,通过抽象场景规范捕获并在现实的交易模拟器中进行调查,进行系统级安全评估。作为基于方案的AVS测试的第一步,必须对fraffiffim festario的初始场景进行评估。在这种情况下,场景具体化挑战是将抽象交通场景的高级特定规范所采用的,旨在将它们映射到具体场景,在该场景中,为车辆的每个属性定义了确切的数字初始值(例如,位置或速度)。在本文中,我们提出了一种交流场景混凝土化方法,该方法将车辆放置在逼真的路线图上,以便满足通过表达式场景规范语言定义的一组可扩展的抽象约束,该语言也支持不一致的静态发现。然后,抽象约束映射到相应的数字约束,通过具有可自定义的目标函数和约束聚合策略的元启发式搜索来解决。我们对三个现实的路线图进行了一系列实验,以将我们方法的八个配置与状态的三种变体进行比较,并评估其可扩展性。
摘要 - 该论文引入了针对资源约束物联网(IoT)环境量身定制的轻巧,有效的键合功能,利用了Parabola Chaotic Map的混乱属性。通过将混沌系统的固有不可预测性与简化的加密设计相结合,提出的哈希功能可确保可靠的安全性和低计算开销。通过基于SRAM初始值将其与物理不封次函数(PUF)集成来进一步增强该函数,该功能可作为设备特异性键的安全且耐篡改的来源。对ESP32微控制器的实验验证证明了该函数对输入变化,特殊统计随机性以及对加密攻击的抗性的高度敏感性,包括碰撞和差分分析。在不同条件下,在关键产生中,平均比重变化的概率接近理想的50%和100%的可靠性,该系统解决了关键的物联网安全挑战,例如克隆,重播攻击和篡改。这项工作贡献了一种新颖的解决方案,该解决方案结合了混乱理论和基于硬件的安全性,以推动物联网应用程序的安全,高效和可扩展的身份验证机制。
1. 简介 等离子体动力学建模通常涉及在精细网格上使用经典场进行操作。这需要处理大量数据,尤其是在动力学模型中,而动力学模型以计算成本高昂而闻名。量子计算 (QC) 有可能通过利用量子叠加和纠缠显著加快动力学模拟速度(参见 Nielsen & Chuang 2010 )。然而,只有当模拟等离子体动力学的量子电路深度与系统大小(网格单元数)成有利的(多对数)比例时,量子加速才有可能。实现这种有效的编码具有挑战性,并且对于大多数具有实际意义的等离子体系统来说仍然是一个悬而未决的问题。在这里,我们探讨了一种有效的量子算法的可能性,用于模拟 Vlasov 等离子体中的线性振荡和波(参见 Stix 1992 )。该领域的先前研究主要集中在初始值问题中对空间单色波或保守波进行建模(参见 Engel、Smith 和 Parker 2019;Ameri 等人 2023;Toyoizumi、Yamamoto 和 Hoshino 2023)。然而,典型的实际应用(例如,对于磁约束聚变)需要对非均匀耗散波进行建模
版本控制2019年1月的公开评论2019年7月的修改包含行业评论2019年10月,2019年10月的最终出版物修订文本,纳入了2020年1月的第2轮行业评论2020年2月2月在文档的各个地方发现的错误纠正。May 2020 Technical corrections for coherence in the document June 2021 Modification of the TAGS for coherence with PIV & ISO September 2021 Added information about Algorithm identifier for Keys January 2022 Added the four TSA E-Sticker Data Objects February 2022 Error corrected in section 4.9 about the PDF417 example March 2022 Typo corrected in section 4.7.2 April 2022 Removed the notion of a在2022年4月的TWIC AID中,测试位添加了标头,表明这不是2022年6月的最终版本更改,以便在没有存在的代理(自动生物识别验证)的情况下进行视觉验证(2022年7月)添加了有关Nexgen使用的TWIC PIN和PIV PIN的信息。.使两次卡应用程序中的发现对象(PIV&TWIC)进行了强制性。2022年8月 2022年8月的一些次要错别字4.3&4.5在2022年11月在pdf 417示例的第417节中的TWIC PIN信息校正2023年3月的第417节中的次要校正和拼写2023年6月在TWIC Card应用程序中添加了一个PUK,2023年7月在2023年7月与TWIC PIN初始值相关的类型中的纠正措施。 附录I关于fasc-n。 也添加了SP 800-73-4的引用。 这也使四个受保护的电子贴纸消失了。 TWIC SDO将不使用,但将带有签名的CHUID,未签名的Chuid和包含的指纹。 不再签名2022年8月的一些次要错别字4.3&4.5在2022年11月在pdf 417示例的第417节中的TWIC PIN信息校正2023年3月的第417节中的次要校正和拼写2023年6月在TWIC Card应用程序中添加了一个PUK,2023年7月在2023年7月与TWIC PIN初始值相关的类型中的纠正措施。 附录I关于fasc-n。 也添加了SP 800-73-4的引用。 这也使四个受保护的电子贴纸消失了。 TWIC SDO将不使用,但将带有签名的CHUID,未签名的Chuid和包含的指纹。 不再签名2022年8月的一些次要错别字4.3&4.5在2022年11月在pdf 417示例的第417节中的TWIC PIN信息校正2023年3月的第417节中的次要校正和拼写2023年6月在TWIC Card应用程序中添加了一个PUK,2023年7月在2023年7月与TWIC PIN初始值相关的类型中的纠正措施。附录I关于fasc-n。也添加了SP 800-73-4的引用。这也使四个受保护的电子贴纸消失了。TWIC SDO将不使用,但将带有签名的CHUID,未签名的Chuid和包含的指纹。不再签名July 2023 Added a small section (3.3.5) about SHA-1 being phased out by NIST July 24, 2023 Official release of the document July 31, 2023 Minor typos and corrections in table of section 4.5 (color of cells) August 8, 2023 Added in all four parts of the documentation a warning related to possible changes regarding the PUK (PIV & TWIC) as well as the format and content of the PDF 417 August 10, 2023 Changed in文档的所有四个部分:Twic Puk和Twic Pin的概念已被删除。在此版本中,只有PDF 417仍可以修改,2023年8月29日修改了第4.7.2节(卡持有人的打印卡信息),以删除此数据对象的签名。2023年9月21日,PDF 417已修改,现在正在使用AAMVA格式。根据2023年9月15日的版本进行的校正,pdf 417修改为在AAMVA标准和CAT读取器上进行对齐,并在附录D上进行了校正,校正DECIMAL中的校正是关于十进制的校正,而不是BCD,而不是BCD,以fors for bcd,以在打印数据对象数据对象长度中更改。
将Jeevamrut的应用与印em蛋糕或Vermitea加固,并结合植物生长的财团 - 促进微生物,例如氮杂杆菌,囊状脊髓膜菌根(VAM)或磷酸盐溶解菌(PSB)的植物疗法和磷酸盐溶解性细菌(PSB)的特性和物理性肥料的质量超过了。本研究是在2021 - 2022年和2022-23期间进行的,有两个因素,即4个水平的因子-J(Jeevamrut),而因子-B(生物含量)为5级。四个级别的因子-J包括三种具有一个对照的Jeevamrut公式,而五个级别的因子B包括四个具有一个对照的生物肥料组合。观察各种基于土壤的参数证实,与对照组和初始值相比,在不同处理下收集马铃薯作物(品种Kufri Bahar)后,土壤pH和土壤的电导率显着降低。此外,据报道,在用Vermitea或Inem Cake加固Jeevamrut后,有机碳,可用的氮,磷和土壤钾得到了增强。可以通过添加由PSB和Azotobactor或VAM真菌组成的生物肥料财团来进一步提高强化Jeevamrut的功效。这些处理对增强土壤微生物活性也有重大影响。
自新冠疫情爆发以来,许多国家就如何将必要的社交距离和卫生措施与经济应对措施结合起来展开了激烈的辩论。这项研究向前迈出了一步,评估了政府应对措施对 2020 年全球一组国家经济表现的影响。通过收集经合组织每周经济活动追踪器、牛津大学新冠疫情政府应对追踪器和 Google Mobility 的信息,我们为 45 个国家/地区在 2020 年和 2021 年建立了综合数据集。通过估计双向固定效应,我们的结果表明财政刺激措施在缓解经济衰退方面非常显著。积极的财政政策和公共管理者对卫生政策的承诺可能会抵消必要的社交距离和生产限制对 GDP 造成的潜在短期负面影响。尤其是,无论模型中使用何种规范,预算努力指标(包括旨在维持家庭收入和为企业提供救济的支出)都是唯一对 GDP 预测变化产生正向和显著影响的变量。结果表明,在疫情期间,公共支出占 GDP 的比例每增加 1%,OECD 每周经济活动指标就会比初始值增加约 1%。
本论文代表在间接模式太阳烘干机(ISD)中使用热热储存(THS)设备的辣椒和薯片的干燥。该实验的目的是在白天为PCM材料充电,当太阳辐射更多并且PCM在辐射不足以干燥产品时释放热量。干燥机由矩形管太阳能收集器,风扇,相变材料,干燥室和50W太阳能电池板制成。太阳能空气收集器和干燥室特征还计算出用于研究干衣机的热性能。在无负载条件下,还测试了干燥机在使用PCM下定义最大热性能。辣椒干燥的分析表明,辣椒的水分含量从初始值(WB)降低到托盘1,Tray 2,Tray 3和Open Sun的最终水分含量分别为8.40%,14.59%,18.97%和29.77%(WB)。同样,对马铃薯干燥的实验研究表明,从入门估计为85.05%(WB)到结论性的水分含量减少到3.89%,7.84%,14.84%和39.39%(WB)的结论性水分含量分别分别为Tray1,Tray2,Tray3,Tray3,Tray3,Tray3和Open Sun Drying。矩形管太阳加热器和干燥室的总体平均效率分别为64%和22.08%。实验的结果是,由于利用相变材料,干燥室的温度和湿度高于傍晚和晚上的环境温度和空气水分。
许多研究表明,疫苗不是完全有效的,这意味着接种疫苗的人群都包括疫苗免疫的人,尽管接受了疫苗接种疫苗,但疫苗的疫苗也没有。这可能是可能的,因为某些接种疫苗的人可能会错误地认为自己受到了完全保护并且无法获得该疾病。这种看法会显着影响行为,导致一些接种疫苗的人在遵循预防或缓解措施方面的勤奋程度较小。是由上述动机的,我们研究了不产生免疫力的接种疫苗人员的行为变化如何影响直接传播疾病的动力学以及关键指标,例如基本的生殖数和疫苗有效性。我们提出了一个模型,该模型考虑了具有三个失败方面的疫苗:“取”,“学位”和“持续时间”。此外,非免疫接种个体的行为变化是通过一个参数建模的,该参数基于遵守缓解措施来调整其接触率。我们的结果使我们能够可视化行为变化在影响疾病传播动态的各种因素中的作用。首先,我们证明了在不完全有效疫苗的模型中存在的向后分叉存在。第二,我们定义了行为指数阈值,该阈值是确定疾病是否由于行为效应而持续存在的关键指标。最后,我们的结果强调了行为指数和感染的初始值