虽然这个极限(称为兰道尔极限)已被证明适用于各种经典系统,但没有确凿的证据证明它可以扩展到量子领域,在量子领域,离散能量本征态的量子叠加取代了连续谱中的热涨落。在这里,我们使用分子纳米磁体晶体作为自旋存储设备,并表明兰道尔极限也适用于量子系统。与其他经典系统相比,由于可调的快速量子动力学,该极限是有边界的,同时还能保持快速操作。这一结果探索了量子信息的热力学,并提出了一种利用量子过程增强经典计算的方法。虽然用理想二元逻辑门(例如 NOT)执行的计算没有最低能量耗散限值 5,6,但在存储设备中执行的计算却有。原因在于,在前者中,位仅仅是在状态空间中等熵地移动,而在后者中,最小操作(称为兰道尔擦除)需要重置存储器,而不管其初始状态如何。让我们看看这种擦除如何应用于经典的 N 位寄存器(图 1(a,左))以及兰道尔极限是如何产生的。在第一阶段,寄存器的每一位都处于确定的状态“0”或“1”,通过降低势垒和通过温度波动的作用来探索两个二进制状态。相空间的这种加倍伴随着每位的熵产生∆S=kBln2。在第二阶段,需要做功 W ≥ T∆S 来将寄存器的熵和相空间减少到它们的初始值。只有当这种减少以可逆的方式进行时,才能达到极限 W=T∆S。这可以通过使用准静态无摩擦系统来实现,即在比其弛豫时间 τ rel 更慢的时间尺度上,从而避免不必要的记忆和滞后效应。因此,相对于系统相关的 τ rel ,慢速(快速)操作通常与较低(较高)的耗散相关。
由于几乎没有数据,我们旨在评估为期两年的培训计划(2Y-TP)之后的年轻女运动员的心肺系统的发展,并探讨了游戏位置 - 特定的变化。方法:通过双能量X射线吸收仪(DEXA)研究了年轻精英女性手球运动员的2y-TP身体组成(年龄:14.2±0.5岁,N 5 33)。通过超声心动图评估心脏的形态变化,并通过螺旋凝分测定了心肺值。结果:与初始值相比,在2y-TP之后,在体重(增长8.8%),骨骼肌质量(7.7%)和体内脂肪(比11.3%)中发现了特征的增加,vo 2(7.8%),vo 2(vo 2(by 10.6%),vco 2(乘以8.3%),oxygen脉冲(vental pulse)(13.8%),the voldal(by 13.8%),tim tim th。 13.7%),左心室质量(24.8%),中风体积(21.2%),并归一化为身体表面的中风体积(16.4%)。心率降低(降低2.9%),而呼吸频率,负载时间,相对功率和相对VO 2没有改变。在测试期间,守门员在最初的时间点和2Y-TP之后的翼球员短时间跑得短。此外,最大心率不会改变守门员,而在2y-TP之后,翼球员的翅膀球员下降。因此,守门员在VO 2峰值的初始VO 2值比机翼球员高,并且在2y-TP之后也保持了差异。相比之下,在守门员中,VO 2峰的相对VO 2最初低于机翼玩家,后者在2Y-TP之后也保持较低。结论:在青春期的女性手球运动员中,2y-TP显着改善的骨骼肌肉质量,与守门员相比,与守门员相比,在翼球员中更加强调了心肺功能的显着改善,这可能是由于训练和比赛中的不同负担所致。
拓扑优化图1(a)描绘了TO的物理模型。拓扑设计空间由400×400×100 nm 3的矩形区域定义,这是测量1的较大电磁场模拟区域的一部分。1 µm×1。1 µm×600 nm。在设计空间下方放置了100 nm厚的SIO 2底物。使用具有高斯模式的R -CPL使用几乎薄的透镜(Na 0.25),以垂直角度将其定向到底物表面上。位于底物表面上的梁腰部在底物表面的直径为982 nm。波长为532 nm,距离基板的光源位于420 nm。tio 2被选为设计材料,其折射率为2。51185 + 0。01128 i在设计波长处,通过椭圆测量法对通过原子层沉积制备的118 nm厚的TIO 2膜进行了实验测量。有限差频域法被用作麦克斯韦求解器[17,40]。用4 nm cu-bic网格离散模拟区域,将最外面的五层分配为完美匹配的层,该层吸收了仿真空间内单个对象散射的电磁场。在TO框架内,配偶的介电函数桥接了设计材料E R和周围空气介质(E 0)的值,形成为E R = E 0 +ρ(E M-e 0)。在这里,设计变量ρ是连续的真实标量,范围为0至1。文献[16,40]中记录了TO的更多细节。我们的设计变量的初始值被设置为随机数字,均匀跨越0.5至0.7。我们采用了基于梯度的优化算法将设计值ρ向0或1驱动,其中ρ= 1的分布代表优化的结构。另外,为了鼓励设计变量的二线化,我们使用sigmoid函数实现了一种投影过滤方法。计算是在具有NVIDIA TESLA V100 SXM2(32 GB)的GPU节点上进行的。
单元1:工程数学线性代数:矩阵代数,线性方程系统,特征值,特征向量。Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line integral, Surface integral, Volume integral, Stokes's theorem, Gauss's theorem, Divergence theorem, Green's theorem.微分方程:一阶方程(线性和非线性),具有恒定系数的高阶线性微分方程,参数变化的方法,Cauchy方程,Euler方程,初始值和边界值问题,部分微分方程,部分微分方程,变量分离方法。复杂变量:分析函数,Cauchy的积分定理,Cauchy的积分公式,Taylor系列,Laurent系列,残基定理,解决方案积分。概率和统计:对定理,有条件的概率,平均值,中位数,模式,标准偏差,随机变量,离散和连续分布,Poisson分布,正态分布,二项式分布,相关分析,回归分析分析,回归分析分析:矩阵逆上的矩阵倒立,求解非元素平等的方法,差异和差异化方法,差异和差异化方法,差异和差异性方法差异化方法,差异差异和差异化方法差异化方法和差异方法。相关分析。单元2:应用力学和设计工程机制:自由图和平衡;摩擦及其应用,包括滚动摩擦,Belt-Pulley,刹车,离合器,螺丝千斤顶,楔子,车辆等。;桁架和框架;虚拟工作;平面运动中刚体的运动学和动力学;冲动和动量(线性和角度)以及能量配方;拉格朗日方程。材料力学:应力和应变,弹性常数,泊松比; Mohr的圆圈,用于平面应力和平面应变;薄缸; shear force and bending moment diagrams;弯曲和剪切应力;剪切中心的概念;梁的挠度;圆形轴的扭转;欧拉的
近来,啤酒厂和饮料公司对开发有别于传统啤酒风格的创新啤酒品种很感兴趣,这些啤酒要么酒精含量低(<2.5% 体积酒精度 (ABV))要么完全不含酒精(<0.5% ABV)。传统啤酒(ABV 高达 10%)含有许多内在和外在因素,可防止病原体增殖或繁殖。低 pH 值、乙醇和啤酒花酸的存在、有限的氧气以及特殊的加工技术(包括麦汁煮沸、巴氏灭菌、过滤、冷藏和处理)等理化特性均有助于微生物稳定性和安全性。这些抗菌屏障中的一个或多个可能发生变化或缺失,可能导致最终产品易受病原体存活和生长的影响。本研究评估了 pH 值、储存温度和乙醇浓度对低酒精和无酒精啤酒中食源性病原体生长或死亡的影响。 pH 值和乙醇浓度分别从初始值 3.65 和 <0.50% ABV 调整为 pH 4.20、4.60 和 4.80;以及 3.20 ABV。样品分别接种大肠杆菌 O157:H7、肠道沙门氏菌和单核细胞增生李斯特菌的五种菌株混合物,然后在两个不同的温度(4 和 14°C)下储存 63 天。使用选择性琼脂在 35°C 下孵育进行微生物计数。结果表明,与低酒精啤酒相比,无酒精啤酒允许病原体生长和存活。大肠杆菌 O157:H7 和肠道沙门氏菌在 14°C 时生长约 2.00 对数,但在 4°CL 下未观察到生长,单核细胞增生李斯特菌更敏感,在所有测试条件下都迅速降至或低于检测限。结果表明,储存温度对于防止病原体的生长至关重要。pH 值似乎对病原体的存活没有显著影响(p < 0.05)。这项挑战性研究表明,饮料制造商需要优先考虑和维护食品安全计划,以及针对低酒精和无酒精啤酒制造商的具体做法。
简介:在过去的几十年中,碳纳米材料(例如碳纳米纤维(CNF)和石墨烯)由于其宏伟的特性而引起了强烈的科学兴趣[1,2]。关于石墨烯的大部分研究都是针对合成高质量和大面积石墨烯方法的探索。有希望的方法是脉搏激光沉积和化学蒸气沉积。虽然在理解石墨烯合成方面已经取得了重要成就,但它们的形成机制尚不清楚。现场技术的最新进展现在为研究原子水平研究固相相互作用的新可能性提供了新的可能性。在这里,我们报告了通过原位透射电子显微镜(TEM)直接观察到铜含有铜纳米纤维(CU-CNFS)的结构转化。实验:使用kaufmann型离子枪制造Cu-CNF(iontech。Inc. Ltd.,模型3-1500-100FC)。所使用的样品是尺寸为5x10x100 µm的市售石墨箔。通过在CNFS生长过程中连续供应Cu,在室温下用1 keV ar +离子辐射石墨箔的边缘。在其他地方详细描述了离子诱导的CNF生长机理的细节[3]。然后将Cu-CNF安装在200 kV的TEM(JEM2010,JEOL CO.,JEOL CO.)的阴极微探针上,并研究了Cu-CNFS向石墨烯的结构转化,在电流 - 电压(I-V)测量过程中进行了研究。结果和讨论:在I-V测量过程中,高温是通过Cu-CNF结构中的Joule加热获得的。焦耳CNF的加热导致其表面石墨化,最后在转化为严重扭曲的石墨烯中。tem图像表明,最初,CNF在本质上是无定形的,而I-V过程中的电流流动引起了CNF的晶体结构的急剧变化,形成了石墨烯的薄层(1-3层)。作为结果,在产生的电流大大增加的情况下,改进了结构的电性能,比初始值高1000倍(从10 -8到10 -5 a)。该过程采用三个步骤进行:Cu纳米颗粒的聚集,无定形碳扩散到Cu中,以及在进一步加热下的Cu纳米颗粒的电迁移。
电气,功率和能源工程(MTQP10)单元1:工程数学线性代数:矩阵代数,线性方程系统,特征值,特征向量。Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line integral, Surface integral, Volume integral, Stokes's theorem, Gauss's theorem, Divergence theorem, Green's theorem.微分方程:一阶方程(线性和非线性),具有恒定系数的高阶线性微分方程,参数变化的方法,Cauchy方程,Euler方程,初始值和边界值问题,部分微分方程,部分微分方程,变量分离方法。复杂变量:分析函数,Cauchy的积分定理,Cauchy的积分公式,Taylor系列,Laurent系列,残基定理,解决方案积分。概率和统计:对定理,有条件的概率,平均值,中位数,模式,标准偏差,随机变量,离散和连续分布,Poisson分布,正态分布,二项式分布,相关分析,回归分析分析,回归分析分析:矩阵逆上的矩阵倒立,求解非元素平等的方法,差异和差异化方法,差异和差异化方法,差异和差异性方法差异化方法,差异差异和差异化方法差异化方法和差异方法。相关分析。桥梁:惠特斯通,开尔文,梅戈赫姆,麦克斯韦,安德森,Schering和Wien,用于测量R,L,C和频率,Q-meter。4-20 MA两线发射器。单元2:仪器,控制和自动化测量和仪器:SI单元,标准(R,L,C,电压,电流和频率),测量表达的系统和随机误差,不确定性的表达 - 准确性和精度,误差,线性和加权回归的传播。单相电路中电压,电流和功率的测量; AC和DC电流探针;真正的RMS仪表,电压和电流尺度,仪器变压器,计时器/计数器,时间,相位和频率测量,数字电压计,数字万用表;示波器,屏蔽和接地。电阻,电容,电感,压电,霍尔效应传感器和相关的信号调节电路; transducers for industrial instrumentation: displacement (linear and angular), velocity, acceleration, force, torque, vibration, shock, pressure (including low pressure), flow (variable head, variable area, electromagnetic, ultrasonic, turbine and open channel flow meters) temperature (thermocouple, bolometer, RTD (3/4 wire), thermistor, pyrometer and semiconductor);液位,pH,电导率和粘度测量。
人们对全球商业太空旅行市场寄予厚望,预计在未来二十年内,该市场将发展成为价值数十亿欧元的产业。太空行业的几家关键参与者,如维珍银河、SpaceX、Blue Origin 或 SNC 等公司,正准备通过开发自己的弹道可重复使用太空飞行器来服务于这个市场,以将人类和货物有效载荷送入亚轨道和低地球轨道 (LEO) 空间。欧洲的单级入轨概念,例如 REL 的 Skylon 或空客的 Spaceplane,更进一步,目标是实现载人亚轨道点对点 (p2p) 运输,类似于当今的空中旅行,但飞行时间要短得多。所有这些发展都可能刺激对新基础设施的需求(例如,太空港、跟踪和监视网络或控制中心),需要实施适当的空间交通管理 (STM) 系统、适当的安全性、可靠性和运营概念,并将航天器无缝集成到日常空中交通中。尽管做出了一些初步努力,但欧洲对商业航空航天的管理和准入缺乏协调一致的方法,与美国相比,欧洲在不久的将来还没有准备好服务于发展中的太空旅行市场。如果没有统一的欧洲乃至全球对商业 STM 的承诺,未来几年预计将通过航空航天的航天器数量将不断增加,这将危及人类健康和空域安全。在本白皮书(第一篇)中,我们总结了 DLR GfR 及其合作伙伴代表 ESA 进行的一项评估研究的主要结果,该研究的目标是在考虑不断发展的空中交通管理 (ATM) 系统的情况下,为未来二十年内实施欧洲 STM 系统制定路线图。为了证明碰撞风险不会从一开始就阻碍亚轨道太空飞行,我们提供了概念证明,即这种旅行通常是可行的,因为隔热和碰撞屏蔽技术取得了重大进展。我们讨论了为满足欧洲 STM 需求而设想的技术、概念和组织设置,重点关注技术和基础设施开发、空间碎片、空间监视和跟踪、空间天气监测以及 ATM 和 STM 集成。为了使 STM 系统在 2030 年至 2035 年的时间范围内投入运行,我们提出了初步路线图以及需要解决的十大 STM 问题列表。在论文 II(Tüllmann 等人)中。本系列论文以论文 III(Tüllmann 等人)结束。2017b),我们讨论了与 STM 相关的安全性和可靠性方面,并提出了第一个风险量化方案以及已识别危害和风险的可接受安全水平的初始值。2017c),其中我们提供了应考虑用于欧洲 STM 设置的初始系统要求、约束和建议。