基层混乱工程计划通常在特定的组织条件下出现。他们需要一个具有高度工程自主权的环境,在那里团队可以自由进行实验和创新而没有过多的官僚障碍。弹性工程或分布式系统方面的本地专业知识至关重要,因为它为理解和实施混乱实验提供了技术基础。最重要的是,这些举措通常依靠混乱冠军 - 了解混乱工程价值的人。混乱冠军愿意倡导采用混乱工程,教育同行并推动初步实验。没有组织自由,技术专长和积极进取的冠军,基层混乱的工程很少扎根,无论其潜在的好处如何。
95个基于硬件的SNN是模拟或数字的。模拟SNN系统[20]显示的功耗低于数字SNN [21]。相比之下,数字SNN更加灵活,因此更适合原型制作,同时显示整体的设计时间更快,因此构成了初步实验和新一代神经假体设计的最佳选择。突出的SNN硬件平台是Merolla [22],Brainscales-2 [23],Spinnaker [24]和Loihi [25]。尽管其中一些系统呈现出移动版本,例如[26]用于BrainScales-2,但它们通常不适合嵌入式应用程序。在本手稿中,我们介绍了实时仿生Snn Biouthmus的功能,以实现独立的神经元和完全连接的网络,展示了系统集成,促进了多功能性和易用性。
{nyee@stanford.edu , bailenson@stanford.edu } 摘要 在社会心理学中,观点采择已被证明是减少负面社会刻板印象的可靠方法。到目前为止,这些练习仅依赖于要求一个人想象自己处于另一个人的心态。我们认为,沉浸式虚拟环境提供了独特的机会,让个人可以直接从另一个人的角度看问题,从而可能大大减少负面刻板印象。在当前的工作中,我们报告了一项初步实验调查,调查了沉浸式虚拟环境中体现观点采择的好处。研究发现,与被置于年轻人化身中的参与者相比,当参与者被置于老年人的化身中时,对老年人的负面刻板印象显着减少。我们讨论了这些结果对社会互动理论和共存的影响。
CCGDA 的使用是一个相对较新的概念,已经在实时战略关卡设计(Liapis、Yannakakis 和 Togelius 2013)(图 1)、超级马里奥世界(Guzdial 等人 2017)和众包谜题(Charity、Khalifa 和 Togelius 2020)中进行了初步实验。虽然这些早期原型系统证明了 AI 游戏设计工具的可行性,但对此类系统设计的原则和惯例的研究很少。我们的研究将调查在设计有效的 CCGDA 时应考虑的不同 AI 技术、游戏启发式方法和交互策略。我们的研究将使用数字纸牌游戏(例如炉石传说)作为研究平台,因为其中一些因素使它们在 AI 研究中很受欢迎(Hoover 等人 2020),包括:
(ssDNA) 是优于 dsDNA 的 HDR 模板。在此,我们报告了一项系统研究,比较了 HEK293 细胞中的 dsDNA HDR 模板和 IDT Ultramer® 寡核苷酸 ssDNA HDR 模板。测试了链选择和同源臂长度,以确定 HDR 在 Cas9 dsDNA 断裂点创建新的限制位点(6 个碱基插入)的效率。使用较长 ssDNA HDR 模板的初步实验表明,与较短 ssDNA 模板具有类似的优势和行为。具有不对称同源臂的模板的 HDR 插入。使用具有不对称同源臂的 HDR 模板导致 EcoRI 插入率与对称同源臂的插入率相似。使用靶向链模板获得了高 HDR 效率,其中
摘要。障碍物检测和避障对于无人机尤其是轻型微型飞行器来说是必需的,并且由于其有效载荷受限,因此车辆上只能安装有限的传感器,因此这是一个具有挑战性的问题。通常,系统中包含的传感器要么是基于视觉的(单目或立体摄像机),要么是基于激光的。但是,每种传感器都有自己的优点和缺点,因此我们构建了基于多传感器(单目传感器和激光雷达)集成的障碍物检测和避障系统。最重要的是,我们还将 SURF 算法与 Harris 角点检测器相结合,以确定障碍物的大致大小。在进行的初步实验中,我们成功地检测并确定了具有 3 种不同障碍物的障碍物的大小。实际障碍物和我们的算法之间的长度差异被认为是可以接受的,约为 -0.4 到 3.6。
背景:在存在“良好”碳源(例如葡萄糖)的存在下,由于综合用于代谢“贫穷”碳源所需的酶的酶,例如乳糖或半乳糖。在许多生物技术过程中,这种现象被称为分解代谢产物抑制作用。因此,找到克服分解代谢物抑制的方法是很大的兴趣。我们的初步实验表明,酿酒酵母半乳糖调节剂的分解代谢物抑制酵母中分解代谢物抑制的模型系统可以通过与半乳糖摄取和分解代谢相关的基因表达的微小变化来克服。目标和方法论:这项工作的目的是了解半乳糖调节的诱导动力学的变化,使这些菌株能够克服分解代谢物的抑制作用。工作需要使用以下参考文献中描述的方法来改变结构基因的实验,并确定其诱导动力学。仪器
摘要:本文介绍了一种数值降低阶建模(ROM)方法,用于对压电微机械超声传感器(PMUTS)的复杂多层阵列(PMUTS)。采用的数值建模技术是为了生成由大量传感器组成的一系列PMUT,可以大大降低计算成本而不会降低准确性。建模想法基于将壳元素应用于PMUT结构层,其3D-固定元素应用于压电层。介绍了一组特征频率和频域分析。提出并测试了228 pmuts的独特布置,并测试了其传输和接收声波的能力。估计了阵列的工作频带以及近乎近距离的不同PMUT之间的干扰和串扰水平。最后,进行了初步实验测试的结果,以分析8×8 PMUT阵列的声学能力。创建了相应的数值模型,并且获得的结果与实验数据匹配,从而验证了本工作中提出的建模技术。
赫伯特·韦恩·“赫伯”·博耶 (Herbert Wayne 'Herb' Boyer,1936 年 7 月 10 日出生) 是生物技术研究员和企业家。赫伯·博耶来自宾夕法尼亚州德里。博耶毕业于匹兹堡大学,主修微生物遗传学。经过 1973 年的初步实验,科恩-博耶团队能够切开一种细菌的质粒环,插入来自不同细菌物种的基因并关闭质粒。这创造了一个重组质粒,其中包含来自两个不同来源的重组 DNA。该团队创造了第一个转基因生物。他是 1990 年国家科学奖章的获得者、1996 年 Lemelson-MIT 奖的共同获得者,也是 Genentech 的联合创始人。他曾是加州大学旧金山分校 (UCSF) 的教授,后来从 1976 年开始担任 Genentech 副总裁,直到 1991 年退休。
摘要:压电执行器具有响应速度快、结构紧凑、精度高、产生巨大阻挡力以及操作简便等特点,在先进分配领域中正被迫切地采用,以提高喷射性能并满足微电子封装、胶粘剂键合和小型化行业的精度要求。本研究重点是一种压电驱动的紧凑型流体分配器的基础设计和开发,该分配器利用一级杠杆的原理来放大针头位移,并扩大所开发的喷射分配器的应用领域。利用基本杠杆原理,进行基于几何的建模,以制造一种常闭铰链杠杆式分配器的工作原型。进行了初步实验,以见证所制造的分配器每秒输送 100 个工作流体点的可行性,这将提供一种分配各种流体的新型装置,并且所提出的放大机制也适用于各种其他压电应用。