图 1 无脊椎动物和水产养殖软体动物的训练免疫反应模型比较。该图说明了在无脊椎动物和海洋软体动物中观察到的训练反应的多样性。图中显示了训练诱导(初级反应)和挑战(次级反应)后随时间推移的免疫反应。文献中描述的不同反应模式用不同颜色的曲线表示。图例表示观察到不同模式的物种:训练后诱导的持续反应,没有消退阶段,一直持续到次级反应(深蓝色线);免疫转变显示出性质上不同的初级和次级反应,涉及不同的基因组(浅蓝色和深绿色线);耐受反应有初级反应但没有次级反应(浅蓝色线)。双相反应,称为回忆反应,有初级反应后是消退阶段,对后续挑战有类似或更强和更快的次级反应(浅绿色线)。
无论是通过自然免疫还是接种疫苗后,对传染病的防御都依赖于保护性 T 细胞记忆的产生和维持。幼稚 T 细胞是初级反应期间记忆 T 细胞生成的中心。激活后,它们会经历复杂、高度受调控的分化过程,向不同的功能状态发展。维持到老年的幼稚 T 细胞经历了表观遗传适应,这会影响它们在分化过程中的命运决定。我们回顾了年龄敏感的分子通路和基因调控网络,这些网络使幼稚 T 细胞分化倾向于效应细胞生成,而牺牲了记忆细胞和 Tfh 细胞。因此,老年人的 T 细胞分化与生物活性废物释放到微环境中、更高的应激敏感性以及偏向促炎特征和更短的寿命有关。这些适应不良不仅导致老年人对疫苗的反应不佳,还会加剧炎症状态。
模式识别受体 (PRR),例如 Toll 样受体 (TLR) 和核苷酸寡聚化结构域样受体 (NLR),在宿主对微生物感染的先天抵抗力中至关重要。这些受体识别病原体相关分子模式 (PAMP) 和危险相关分子模式 (DAMP),并将这些信号转化为生物反应。TLR 通过募集信号转导接头髓系分化初级反应蛋白 88 (MyD88) 和/或含有 TIR 结构域的接头蛋白诱导 IFN- β (TRIF) 及其各自的辅助接头 MyD88 接头样 (Mal) 和 TRIF 相关接头分子 (TRAM) ( 1 – 8 ) 来实现这一点。大多数 TLR 使用 MyD88 作为信号转导接头,但 TLR3 除外,它仅通过 TRIF 发出信号,而 TLR4 同时使用 TRIF 和 MyD88 ( 2 )。除 PRR 外,许多早期炎症反应还受白细胞介素 (IL)-1 细胞因子家族调节,包括 IL-1a、IL-1b、IL-18 和 IL-33 (9)。对这些细胞因子的反应由 IL-1 受体 (IL-1R) 以及密切相关的 IL-18R 和 IL-33R 介导,所有这些细胞因子都使用 MyD88 作为信号转导接头,类似于 TLR (9-11)。IL-1R 或大多数 TLR 的参与会导致 MyD88、IL-1 受体相关激酶 (IRAK) 4 和 IRAK2 或 IRAK1 的层级募集,随后是 E3 泛素连接酶 TNF 受体相关因子 6 (TRAF6) (10-18),形成