全球人口增长已导致许多自然生态系统的土地利用 (LU) 发生变化,从而导致影响土壤质量的环境条件恶化。在缺水且土壤有机资源不足的系统中,土地利用对土壤质量的影响尤为显著。因此,本研究的主要目标是使用成像光谱 (IS) 评估人类活动(即土地利用,如放牧、现代农业和径流收集系统)对以色列干旱地区土壤质量的影响。为此,选择了 12 种物理、生物和化学土壤特性,并将其进一步整合到土壤质量指数 (SQI) 中,以此作为评估以色列南部干旱地区土地利用变化的显著影响的方法。AisaFENIX 高光谱机载传感器的飞行活动用于开发区域范围内 SQI 的 IS 预测模型。使用偏最小二乘判别分析 (PLS-DA) 分类方法 (OA = 95.31%,Kc = 0.90),从高光谱图像本身提取的光谱特征在四个 LU 之间可以很好地分离。使用多元支持向量机回归 (SVM-R) 模型对光谱数据和测量的土壤指标以及总体 SQI 进行相关性分析。SVM-R 模型与几种土壤特性显著相关,包括总体 SQI (R 2 adj Val = 0.87),成功预测了 r
摘要 — 事故分析表明,飞行员可能无法处理诸如警报之类的听觉刺激,这种现象称为注意力缺失性失聪。这项研究的目的是开发一种被动脑机接口,可以预测在真实飞行条件下这种关键现象的发生。十名配备干脑电图系统的志愿者必须飞行一个具有挑战性的飞行场景,同时通过按下按钮来响应听觉警报。行为结果显示,飞行员错过了 36% 的听觉警报。ERP 分析证实,由于潜在的注意力瓶颈机制,这种现象会影响早期(N100)和晚期(P300)阶段的听觉处理。使用稀疏表示分类 (SRC)、稀疏和密集表示 (SDR) 以及更传统的方法(例如线性判别分析 (LDA)、收缩 LDA 和最近邻 (1-NN))对警报响起前三秒提取的频率特征进行受试者间分类。在最佳情况下,SRC 和 SDR 分别给出了 66.9% 和 65.4% 的正确平均分类率来预测注意力不集中性耳聋的发生,优于 LDA (60.6%)、sLDA (60%) 和 1-NN (59.6%)。这些结果为神经自适应自动化的实施开辟了光明的前景,最终目标是增强警报刺激传递,使其被感知和采取行动。
摘要:2型糖尿病(T2DM)的早期诊断将提供早期的治疗干预措施,以控制疾病进展并最大程度地减少过早死亡。本文提出了人工智能和机器学习预测模型,用于更准确地诊断阿曼人口中的T2DM,并且使用特殊创建的数据集进行了更少的处理时间。六种机器学习算法:K-Nearest邻居(K-NN),支持向量机(SVM),幼稚贝叶斯(NB),决策树,随机森林(RF),线性判别分析(LDA)和人工神经网络(ANN)(ANN)。所有使用的数据都是从糖尿病前期寄存器手动收集的临床数据和阿曼南阿尔·巴蒂纳省的Al SHIFA卫生系统。将结果与最广泛使用的PIMA印度糖尿病数据集进行了比较。考虑到预测T2DM的11个临床特征。随机森林和决策树模型的性能要比所有其他算法都更好,而阿曼数据的准确性为98.38%。使用相同的模型和功能数量时,阿曼数据集获得的精度超过了PID 9.1%。分析表明,T2DM诊断效率提高了更多的特征,这在许多缺失值的情况下有助于。
运动图像(MI)EEG信号在BCI应用中广泛使用,因为它们通过想象身体肢体运动为用户提供了全部控制[9]。想象的和物理的肢体运动引起了MU-RHILTHM同步和去同步,可以使用感觉运动皮层上的EEG技术进行探索[10]。许多作品已经实施了特定技术选择和降低维数的特定技术,其中遗传算法(GA)[11] [11],顺序的正向特征选择(SFF)[12],线性判别分析(LDA)[13] [13],经验模式分解(EMD)[14]和FISHER INCTICNANT INCINICINANT ANARESSICS(FISHER INCTINANT分析)(FDA)[15] [15] [15] [15] [15]。因此,有效的线性分类器(例如支持向量机(SVM)[16]和LDA [17]被广泛用于特征的分类。此外,贝叶斯分类器[18],隐藏的马尔可夫模型分类器(hmm)[19]和K-Nearest邻居(K-NN)分类器[20]同样为EEG特征分类提供了竞争结果。从这个意义上讲,Miao等。[21]将右手食指解码用于手指康复。在他们的角度,Nijisha等人。[22]使用基于常见空间图案(CSP)和单个卷积层的空间过滤器对左手,右手,双手和脚MI-EEG信号进行分类。
摘要 — 要使运动想象脑机接口 (MI-BCI) 技术可用且在实验室外实际使用,主要挑战在于提供在分类准确性方面高效且易于安装的 EEG 系统,例如使用最少数量的干电极。我们假设最佳信号处理方法可能取决于所使用的(干)电极的数量。因此,我们首次比较了与不同干电极设置相关的分类准确性,即从 8 到 32 通道的 7 种配置,以及各种信号处理方法,即 (1) 正则化公共空间模式 (rCSP) + 线性判别分析,(2) rCSP + 支持向量机 (SVM),(3) 到黎曼均值的最小距离和 (4) 黎曼切线空间中的 SVM。此离线比较针对 10 位参与者(每人一个会话)的数据进行。我们的结果表明,无论采用哪种方法,MI-BCI 性能在 8 和 12 个通道时都会显著下降(p < 0.01)。此外,方法 3 的性能最低(p < 0.05)。最后,博士后分析表明,方法 1 和 2 在电极数量最多(28 和 32)时性能最佳。对于方法 4,使用 20 和 24 个通道可获得最佳性能,这似乎是最佳组合(p < 0.05)。这些结果表明,根据所用电极数量选择信号处理管道非常重要。
摘要 机器学习方法已成功应用于多种神经生理信号分类问题。考虑到情绪与人类认知和行为的相关性,机器学习的一个重要应用是在基于神经生理活动的情绪识别领域。尽管如此,文献中的结果存在很大的差异,这取决于神经元活动测量、信号特征和分类器类型。本研究旨在为基于电生理脑活动的机器学习应用于情绪识别提供新的方法论见解。为此,我们分析了之前记录的脑电图活动,这些活动是在向一组健康参与者提供情绪刺激、高唤醒和低唤醒(听觉和视觉)时测量的。我们要分类的目标信号是刺激前开始的大脑活动。使用光谱和时间特征比较了三种不同分类器(线性判别分析、支持向量机和 k-最近邻)的分类性能。此外,我们还将分类器的性能与静态和动态(时间演变)特征进行了对比。结果表明,时间动态特征的分类准确率明显提高。特别是,具有时间特征的支持向量机分类器在对高唤醒和低唤醒听觉刺激进行分类时表现出最佳准确率(63.8%)。
摘要:保持自由活动的能力对于生活质量至关重要。随着人们年龄的增长或面临事故、自然灾害或中风等健康状况等挑战,他们可能会因脚踝问题而难以行动。当脚踝不平衡时,会影响步行模式。本研究探索使用红外光谱 (fNIRS) 控制外骨骼以辅助脚踝运动。测试了六个统计特征和四个机器学习分类器,其中 k 最近邻 (kNN) 分类器通过结合所有特征实现了 91.1% 的准确率。为了防止过度拟合,确定了 kNN 的个性化最佳“k”值。简介:在本研究中,fNIRS(功能性近红外光谱)被用作脑机接口 (BCI) 系统的数据采集方式。在执行动作的过程中,大脑需要氧气来激发神经元,从血液中吸取氧气并改变特定点的含氧和缺氧血液的浓度 [1]。 fNIRS 测量这种浓度变化。典型的 BCI 系统涉及几个阶段:数据采集、预处理、特征提取和分类。方法:20 名健康参与者使用 NIRX NIRSport2 fNIRS 系统进行数据采集。该设置包括 20 个通道,由 8 对相距 3 厘米的源和探测器创建,遵循国际 EEG 10-20 系统。实验方案包括与膝关节伸展和屈曲相关的运动任务。随后,使用 nirsLAB 工具箱对收集的数据进行预处理以检查血流动力学反应。采用 0.01 Hz 至 0.3 Hz 的带通滤波器消除生理干扰。结果:从 ΔHbO 中提取了均值、峰值、偏度、方差、峰度和斜率等统计特征并进行了分析。与其他组合相比,这六个特征组合的分类准确率明显更高,为 9.11%。与二次判别分析 QDA(77.9%)、支持向量机(75.2%)和线性判别分析 LDA(62.2%)相比,k 近邻算法具有更高的准确率。这些比较的 p 值小于 p<0.005。结论:该研究提出了一种对 fNIRS 数据进行分类和利用的策略,分析了六个统计指标作为特征。其中,斜率对分类具有重要意义。结合所有六个特征可获得最高准确率,其次是特征较少的组合,强调了它们的重要性。测试四个机器学习分类器表明 kNN 最准确,明显优于 LDA、QDA 和 SVM。kNN 的最佳 k 值因受试者和特征组合而异,有助于优化性能和减少过度拟合。这些发现为有效利用 fNIRS 数据进行分类任务提供了一个框架,为康复机器人应用中的特征重要性和分类器性能提供了见解。参考文献:[1] N. Jovanović-Simić、I. Arsenić 和 Z. Daničić,“脑机接口系统在严重运动障碍患者交流中的应用”,Spec. Edukac. i Rehabil.,第 21 卷,第 1 期,第 51-65 页,2022 年,doi:10.5937/specedreh21-35403。
单元 – 第一线性模型多层感知器 – 向前 – 向后:反向传播误差 – 实践中的多层感知器 – 使用 MLP 的示例 – 概述 – 推导反向传播 – 径向基函数和样条 – 概念 – RBF 网络 – 维数灾难 – 插值和基函数 – 支持向量机单元 – 第三树和概率模型用树学习 – 决策树 – 构建决策树 – 分类和回归树 – 集成学习 – 提升 – 装袋 – 组合分类器的不同方法 – 概率和学习 – 数据转化为概率 – 基本统计 – 高斯混合模型 – 最近邻方法 – 无监督学习 – K 均值算法 – 矢量量化 – 自组织特征映射。单元 – IV 降维和进化模型 降维 – 线性判别分析 – 主成分分析 – 因子分析 – 独立成分分析 – 局部线性嵌入 – Isomap – 最小二乘优化 – 进化学习 – 遗传算法 – 遗传后代:- 遗传算子 – 使用遗传算法 – 强化学习 – 概述 – 迷路示例 – 马尔可夫决策过程 单元 – V 图形模型 马尔可夫链蒙特卡罗方法 – 抽样 – 提案分布 – 马尔可夫链蒙特卡罗 – 图形模型 – 贝叶斯网络 – 马尔可夫随机场 – 隐马尔可夫模型 – 跟踪方法。
与植物生命活动密切相关的根部内生微生物的多样性与植物生长阶段有所不同。这项关于稻米jiafuzhan的研究探索了植物生命周期中根部内生细菌和真菌及其动力学的多样性。分别获得了16S核糖核糖核酸(16S rRNA)和内部转录间隔基(ITS)基因,12,154个操作分类学单元(OTUS)和497个Agplicon序列变体(ASV)。使用多样性和相关性分析分析了第一个作物的幼苗,耕作,耕作,接头,标题和成熟阶段,在再生后的13、25和60天(分别在标题,完整的标题和第二个作物的成熟阶段)。在生长阶段的α多样性和β多样性中存在显着差异。此外,线性判别分析(LDA)效应大小(LEFSE)分析显示,每个生长阶段都有生物标志物细菌,但是在每个阶段都不存在生物标志物真菌。相关分析表明,细菌和真菌生物标志物相互作用。此外,在所有生长阶段都存在氮固定属。这些发现表明了在不同生长阶段的ratooon大米的根部内生微生物的模式,并且它们为第二种ratoon大米的高产量提供了新的见解(鉴于各种细菌和真菌的丰度)。
摘要:运动想象 (MI) 是一种无需实际使用肌肉即可想象运动任务执行的技术。当用于由脑电图 (EEG) 传感器支持的脑机接口 (BCI) 时,它可以用作人机交互的成功方法。本文使用 EEG MI 数据集评估了六种不同分类器的性能,即线性判别分析 (LDA)、支持向量机 (SVM)、随机森林 (RF) 和来自卷积神经网络 (CNN) 系列的三种分类器。该研究调查了这些分类器在静态视觉提示、动态视觉引导以及动态视觉和振动触觉 (体感) 引导的组合指导下对 MI 的有效性。还研究了数据预处理过程中滤波通带的影响。结果表明,在检测不同方向的 MI 时,基于 ResNet 的 CNN 在振动触觉和视觉引导数据上的表现都明显优于竞争分类器。事实证明,使用低频信号特征对数据进行预处理是实现更高分类准确度的更好解决方案。研究还表明,振动触觉引导对分类准确度有显著影响,而相关改进对于结构更简单的分类器尤其明显。这些发现对于基于 EEG 的 BCI 的开发具有重要意义,因为它们提供了有关不同分类器在不同使用环境中的适用性的宝贵见解。