摘要:将机器学习(ML)和人工智能(AI)整合到种子科学和技术中代表了农业研究中的变革性范式。这项研究探讨了ML和AI方法的潜力和应用,以增强与种子相关过程的各个方面。从种子生存能力评估到作物产量预测,使用高级算法使人们可以对种子特征有更精确,有效的理解。抽象钻探到了特定的应用中,例如种子育种中的预测性建模,图像识别和数据驱动的决策。通过利用ML和AI的力量,种子科学领域的研究人员和从业人员可以彻底改变传统方法,促进可持续的农业,并确保在不断发展的全球景观中进行粮食安全。
Issue Action Notes Roll Call Present: Dr. Swee, Dr. Gochfeld, Dr. Moynihan, Dr. Barberio, Ms. Olson, Dr. Lind (ex-officio) Unable to attend: Dr. Marcus, Mr. Schafer Dr. Swee's pre meeting Dr. Swee called the meeting to order by reading the following statement as announcement required for the Board's meetings: In compliance with Chapter 231 of the public laws of 1975, notice of this meeting was given by way of filings in the特伦顿时报,《星报》和大西洋城出版社。审查从2023年4月19日的批准会议记录的审查,对会议进行了审查和批准。批准的会议摘要还将发布在Durb网站上:htt o:// n i.a ov/humanservices/dmahs/dmahs/dmahs/boards/durb/geetina/index.html•秘书报告 - 专员已在
Andrii Shuliak 1 、Andrii Hedzyk 2 、Nina Tverezovska 3 、Lyubov Fenchak 4 、Natalia Lalak 5 、Anatolii Ratsul 6 、Oleksandr Kuchai 7 1 教育学博士,乌克兰帕夫洛·特奇纳乌曼国立师范大学信息学、信息和通信技术系教师 2 乌克兰德拉戈马诺夫国立师范大学研究生(博士) 3 教育学博士,教授,乌克兰国立生命与环境科学大学社会工作与康复系教授 4 教育学候选人,副教授,乌克兰穆卡切沃国立大学 5 教育学候选人,副教授,乌克兰穆卡切沃国立大学 6 教育学博士,教授,沃洛基米尔教育与特殊教育系主任维尼琴科乌克兰中央国立师范大学,乌克兰 7 教育学博士,副教授,乌克兰国立生命与环境科学大学教育学系教授,乌克兰
对妇科癌和宿主免疫力之间的复杂串扰进行了广泛的研究,揭示了对肿瘤发育的迷人见解。包括各种非肿瘤细胞和可溶性介体的肿瘤微环境(TME)在支持妇科癌症发展中起着关键作用(1,2)。在这些元素中,肿瘤 - 纤维化淋巴细胞(TILS)成为捍卫者,配备了识别和消除癌细胞。此外,TME包括与癌症相关的纤维细胞(CAF),内皮细胞,趋化因子,细胞因子,生长因子和抗体,共同调节癌症的启动,进步,甚至治疗反应(3-5)。癌细胞和其他TME成分释放了许多可以抑制或激活免疫细胞功能的免疫调节信号,从而有效地塑造了免疫反应(6-11)。因此,根据其组成,TME有可能将免疫系统从抗肿瘤模式转换为肿瘤状态(图1)。令人鼓舞的是,针对TME成分的治疗方法,包括髓样衍生的抑制细胞(MDSC),与肿瘤相关的巨噬细胞(TAM)和调节性T细胞(Tregs)(Tregs),并在临床前和临床研究中都表现出了令人鼓舞的抗肿瘤活性(12-18)。因此,探索TME的预测和治疗价值是推进妇科癌症治疗的明显希望。在这里,我们发表了一篇研究主题,介绍了六篇文章,重点介绍了针对妇科癌症的TME靶向治疗策略。Yu等人的评论。强调了血管生成在癌症免疫疗法的效率中的关键作用,特别是在卵巢癌的背景下。概述了血管生成,新血管的形成,不仅支持肿瘤的生长和转移,而且显着影响TME,从而影响了免疫疗法(例如免疫检查点抑制剂(ICIS))的成功。通过通过异常肿瘤脉管系统促进血液灌注不足,缺氧和免疫逃避,血管生成为有效的免疫疗法带来了艰巨的障碍。抗血管生成疗法被贝伐单抗等药物示例,其针对这些血管异常,不仅破坏了肿瘤血液供应,而且可以潜在地重塑TME,从而增强了抗肿瘤免疫力。临床和临床前研究表明
* 作者感谢以下人员就创新豁免进行的有益讨论:Rebecca W. Hanmer,美国环境保护局水资源执法和许可办公室主任;David Foster,美国环境保护局外联和经济激励人员主任;以及 William H. Foskett,独立顾问,前任绩效发展研究所空中团队负责人。** 技术与政策副教授。麻省理工学院政策选择中心 (CPA) 主任。前公共成员和国家职业安全与健康咨询委员会前主席。前科学顾问委员会成员。美国环境保护局。文学士学位,1959 年,华盛顿大学;博士学位,1965 年,芝加哥大学(物理化学);法学博士学位,1972 年,芝加哥大学。*** 研究助理和专职律师,CPA,麻省理工学院。文学士学位1971 年,普渡大学:1973 年,东北大学,硕士;1984 年,东北大学,法学博士。**** 麻省理工学院客座研究经济学家、注册会计师。1968 年,华盛顿大学,文学士;1970 年,布朗大学,硕士。1. 技术创新是新技术理念首次在商业上获得成功。根据定义,它发生在那些在市场上竞争的机构中,主要是私营营利性公司。创新应与发明区分开来,发明是技术创新的开发
本综述探讨了自然语言处理 (NLP) 和人工智能 (AI) 的集成,以增强实时分析的数据可视化。在数据呈指数增长的时代,传统的静态可视化越来越不能满足实时决策的需求。NLP 和 AI 提供了复杂的工具来动态解释和可视化数据,将大量原始信息转化为各个领域的可操作见解。本文综合了 NLP 和 AI 在数据可视化方面的当前研究、方法和应用,重点介绍了关键进展,例如增强的数据可解释性、实时数据处理能力以及通过自然语言查询和交互元素改善的用户交互。它还解决了实施这些技术所面临的挑战和局限性,包括计算复杂性、数据质量问题和道德考虑。本综述确定了重要的趋势和未来方向,例如增强现实和虚拟现实 (AR/VR) 的集成以及生成式 AI 模型的使用,这些趋势和方向有望进一步推动该领域的发展。通过全面概述数据可视化中 NLP 和 AI 的现状,本文旨在为未来的研究和开发工作提供参考和指导,以利用这些技术实现更有效、更高效的数据驱动决策。
解决电子结构问题代表了量子计算机的一个有前途的应用领域。目前,人们投入了大量精力设计和优化近期量子处理器的量子算法,目的是使用有限的量子资源在选定的问题实例上超越经典算法。这些方法仍有望具有防止大规模和批量系统量子模拟的运行时间。在这项工作中,我们提出了一种策略,使用在量子模拟数据上训练的机器学习潜能将量子计算方法的范围扩展到大规模模拟。在当今的量子环境中应用机器学习潜能的挑战来自于影响电子能量和力的量子计算的几种噪声源。我们研究了选择各种噪声源的机器学习潜能的可训练性:统计、优化和硬件噪声。最后,我们从实际 IBM Quantum 处理器上计算的氢分子数据构建了第一个机器学习潜能。这已经使我们能够执行任意长且稳定的分子动力学模拟,优于所有当前分子动力学和结构优化的量子方法。
摘要:焦虑症 (AD) 是一种主要的精神疾病。然而,由于 AD 的症状和混杂因素很多,很难诊断,患者长期得不到治疗。因此,研究人员对非侵入性生物信号的兴趣日益浓厚,例如脑电图 (EEG)、心电图 (ECG)、皮肤电反应 (EDA) 和呼吸 (RSP)。将机器学习应用于这些信号使临床医生能够识别焦虑模式并区分病人和健康人。此外,已经开发了具有多种不同生物信号的模型,以提高准确性和便利性。本文回顾并总结了 2012 年至 2022 年发表的将不同的机器学习算法应用于各种生物信号的研究。在此过程中,它提供了当前发展优缺点的观点,以指导未来焦虑检测的进步。具体而言,这篇文献综述表明,对于样本量为 10 至 102 名参与者的研究,测量准确度在 55% 至 98% 之间,非常有希望。平均而言,仅使用 EEG 的研究似乎获得了最佳性能,但使用 EDA、RSP 和心率可获得最准确的结果。随机森林和支持向量机被发现是广泛使用的机器学习方法,只要进行了特征选择,它们就会产生良好的结果。神经网络也被广泛使用,并提供良好的准确性,其优点是不需要进行特征选择。这篇综述还评论了模态的有效组合以及检测焦虑的不同模型的成功。
评估心肌的形状和运动状态对于诊断心血管疾病至关重要。然而,电影磁共振 (CMR) 成像以 2D 切片为主,其大切片间距对切片间形状重建和运动获取提出了挑战。为了解决这个问题,我们提出了一种将运动和形状分离的 4D 重建方法,该方法可以从有限切片获得的给定稀疏点云序列预测间/内形状和运动估计。我们的框架包括一个神经运动模型和一个舒张末期 (ED) 形状模型。隐式 ED 形状模型可以学习连续边界并鼓励运动模型在没有地面真实变形监督的情况下进行预测,并且运动模型通过将任意点从任意阶段变形到 ED 阶段来实现形状模型的规范输入。此外,构建的 ED 空间可以对形状模型进行预训练,从而指导运动模型并解决数据稀缺问题。我们提出了我们所知的第一个 4D 心肌数据集,并在提出的、公开的和跨模态的数据集上验证了我们的方法,显示出卓越的重建性能并实现了各种临床应用。
农业创新对于扩大农作物的遗传多样性至关重要,专注于提高产量,对生物和非生物应力因素的耐受性营养价值以及对新环境的适应性,尤其是在响应气候变化方面。利用各种遗传资源,包括在包括局部陆地等基因库中维持的农场多样性和种质,以及次级基因库,也必须变得势在必行。传统品种,陆地和其他未充分利用的种系很少被育种者使用,主要是由于不必要的联系。基因组学工具可以有效地处理这一问题。例如,大米中的“ SD1基因与干旱耐受性QTL之间的遗传联系”是一个显着的繁殖挑战,最近通过标记辅助育种克服了。另一个例子是“ Cimmyt-发现的种子(种子)”计划,该计划使用基因组学工具来大量使用小麦种质库。先进的基因组学工具和技术通过知识丰富为制定育种计划的知识发展提供了有希望的途径。通过识别和融合新等位基因来整合未充分利用的遗传多样性和解锁遗传多样性,可以扩大培养品种的遗传基础。这种方法称为“基因组学辅助杂种”,包括多样性分析,功能基因组学和结构基因组学,以及用于作物改善所需的先进统计工具。拥抱“基因组辅助 - 预育”对于满足全球粮食,燃料和鱼的需求而言至关重要。