修读“项⽬报告”,以获得,以获得21学“实习及报告”,的学⽣须修读以下八⾨选修学科单元/科⽬,以获,以获24学分︰453 3数字集成电路453数据转换器集成电路设计453数据转换器集成电路设计453数据转换器集成电路设计453柔性交流输电系统453 3柔性交流输电系统453电源管理集成电路设计453 45 3 3⽣物医学⼯程专题453⽣物医学⼯程专题453 3
基于软光刻技术的大规模集成电路的发展引发了微流体领域的一场新革命。然而,这项技术本质上依赖于微机械阀门的气动控制,这些阀门需要气压才能运行,而数字微流体则使用电极上的纯电信号来操纵液滴。在本文中,我们讨论了数字微流体在解决任意流体操纵中的数字暴政问题方面的前景和当前挑战。我们提炼了控制电润湿的基本物理原理及其对控制电子器件规格的影响。我们概述了数字微流体中现有的控制电子器件,并详细介绍了实现低功耗可编程数字微流体系统所需的改进。这种仪器将引起专业和非专业(业余爱好者)群体的广泛兴趣。
摘要 药物控制释放是当前药物输送系统的一个关键组成部分,旨在提高治疗效果,同时最大限度地减少负面影响。由于其可调特性和广泛的应用,微球已成为实现药物控制释放的适应性载体。这篇综述论文深入探讨了利用微球控制药物释放的配方技术、机制和问题。本文首先讨论了药物控制释放在医疗保健中的重要性以及微球在实现这一目标方面发挥的关键作用。然后,它研究了微球的众多配方选择,包括材料选择、生产工艺和药物包合技术。还彻底研究了微球特性(例如粒度、形状和药物负载)对释放动力学的影响。详细描述了影响药物从微球释放的过程,包括扩散控制、侵蚀控制和膨胀控制释放机制以及聚合物特性和药物-聚合物相互作用的相互作用。本文研究了产生靶向药物释放的复杂方法,包括外部刺激响应微球和内部刺激响应系统。研究了位点特异性靶向策略,包括通过增加渗透性和保留 (EPR) 效应进行被动靶向和通过配体功能化微球进行主动靶向。尽管基于微球的药物输送系统前景广阔,但它仍面临许多障碍。主要挑战是爆发释放、稳定性、扩大规模、免疫原性和监管问题。在基于微球的药物输送方面,讨论了增强表征技术、纳米技术集成、联合疗法、个性化医疗和新趋势方面的最新进展。关键词:微球、药物输送、控释、配方、机制、扩散控制释放、侵蚀控制释放、肿胀控制释放、靶向释放、外部刺激响应、内部刺激响应、纳米技术集成、联合疗法、个性化医疗、挑战、先进的表征技术、扩大规模、稳定性、免疫原性、监管考虑、未来前景、创新。国际药物输送技术杂志 (2024); DOI:10.25258/ijddt.14.1.68 如何引用本文:Vishwakarma R、Tare H、Jain SK。《用微球调节药物释放:配方、机制和挑战》。《国际药物输送技术杂志》。2024;14(1):487-495。支持来源:无。利益冲突:无
在脑类器官中[58]。 (f)TPP制造光子晶体微纳米传感单元[59]。 (g)成像在脑类器官中[58]。(f)TPP制造光子晶体微纳米传感单元[59]。(g)成像
免疫检查点分子阻断剂 ( immune checkpoint blockade , ICB ) 是肿瘤免疫治疗的有效策略之一 , 其中靶向程序 性死亡受体 -1 ( programmed death receptor-1 , PD-1 ) / 程 序性死亡配体 -1 ( programmed death-ligand 1 , PD-L1 ) 的单克隆抗体主要在 TME 中发挥调节免疫细胞功能 的作用。 CD8 + T 细胞是抗肿瘤反应中极具破坏性的 免疫效应细胞群 , 其浸润到 TME 的密度是影响免疫 检查点阻断治疗结果的预测指标 [ 18 ] 。研究表明 , PD- 1/PD-L1 检查点抑制剂与化疗药物联合使用是治疗晚 期非小细胞肺癌的有效方法 , 然而其在肝癌 、 前列腺 癌等实体肿瘤中效果并不理想 [ 19 ] 。为了增强 PD-L1 抗体免疫治疗疗效 , Li 等 [ 20 ] 开发了一种偶联抗 PD- L1 单克隆抗体和负载多西紫杉醇 ( docetaxel , DTX ) 多 功能微泡系统 , 联合超声空化效应增加肿瘤细胞的凋 亡率和 G2-M 阻滞率 , 还可以通过促进 CD8 + T 和 CD4 + T 细胞的增殖 、 降低细胞因子 VEGF 和 TGF-β 的水平来增强抗肿瘤作用。为了提高 PD-L1 抗体在 肝癌中的治疗效果 , Liu 等 [ 21 ] 设计了一种携带 PD-L1 抗体和二氢卟吩 e6 ( chlorin e6 , Ce6 ) 的靶向纳米药物 递送系统 , 该类靶向纳泡可通过 PD-L1 抗体主动靶向 作用 , 促进 Ce6 在肿瘤部位的聚集与释放 , 并通过超 声介导 Ce6 声敏效应促进肿瘤细胞凋亡 、 诱导肿瘤细 胞发生免疫原性死亡 , 同时通过 PD-L1 抗体对 PD- 1/PD-L1 信号通路的阻断促进 CD8 + T 在肿瘤组织中 浸润 , 两者协同发挥抗肿瘤免疫反应。为了增强肿瘤 内部免疫细胞渗透 , Wang 等 [ 22 ] 提出一种将 PD-L1 靶 向的 IL-15 mRNA 纳米疗法和 UTMD 结合的治疗策 略 , 通过声孔效应特异性地将 IL-15mRNA 转染到肿 瘤细胞中 , 激活 IL-15 相关的免疫效应细胞 , 同时阻 断 PD-1/PD-L1 通路 、 诱导免疫原性死亡进而启动强 大的全身免疫反应。 3.3 超声联合载药微泡调节 TME 免疫抑制状态
修读“项目报告”的学生须修读以下七门选修学科单元/科目,以获得21 学分;修读“实习及报告”的学生须修读以下八门选修学科单元/科目,以获得24 学分︰ 集成电路研究方法和应用选修45 3 数字集成电路选修45 3 数据转换器集成电路设计选修45 3 柔性交流输电系统选修45 3 电源管理集成电路设计选修45 3 生物医学工程专题选修45 3
通过观察个体育种值随时间的变化来检测微进化对自然选择的反应是一项挑战。收集合适的数据集可能需要很多年,而且理清环境和遗传对表型变化的贡献并非易事。此外,基于谱系的获取个体育种值的方法存在已知偏差。在这里,我们应用基因组预测方法来估计索艾羊 (Ovis aries) 35 年数据集中成年体重的育种值。与传统的基于谱系的方法进行了比较。在研究期间,成年体重下降,但体重的潜在遗传成分增加,但增加的速度不太可能归因于遗传漂变。因此,可能发生了成年体重增加的隐秘微进化。基因组和基于谱系的方法给出了基本一致的结果。因此,使用基因组预测来研究野生种群的微进化可以消除对谱系数据的要求,可能为类似研究开辟新的研究系统。
7 Nathan Binkert、Bradford Beckmann、Gabriel Black 等人(2011 年)。“Gem5 模拟器”。引自:SIGARCH Comput. Archit. News 39.2,第 1-7 页。8 Jason Lowe-Power 等人(2020 年)。“GEM5 模拟器:版本 20.0+”。引自:arXiv 预印本 arXiv:2007.03152。9 Sheng Li 等人(2009 年)。“McPAT:用于多核和众核架构的集成功率、面积和时序建模框架”。引自:IEEE/ACM 国际微架构研讨会 (MICRO),第 469-480 页。
1. 每队由11名球员组成,用脚踢球。 2. 球队通过将球踢入对方球门来得分。 3. 比赛通常持续 90 分钟,半场 45 分钟,中场休息 15 分钟。 4. 如果比赛结束时比分打平,则为平局。 5. 如果比赛结束时比分打平,在某些联赛或锦标赛中可能会进行加时赛。 6. 如果加时赛中仍无进球,则进行点球大战。