空间规划和利用。立法机构的意图是,德克萨斯州教育局 (TEA) 应最大限度地提高其位于 William B. Travis 大楼总部的空间规划和利用效率,并应腾出两层楼的空间,以便其他州机构使用,从而为该州带来长期节省。因此,在上述战略 B.3.4(中央管理)的拨款中,包括 2024 财政年度从一般收入基金中拨款 3,800,000 美元,用于 TEA 与德克萨斯州设施委员会 (TFC) 或其他实体签订合同,以转移服务、空间配置和小型施工、家具、会议室技术、地毯更换、安全入口点和相关费用,以实现在 2024-25 两年期结束前将运营合并到不超过五层楼。TEA 和 TFC 应不迟于 2024 年 7 月 1 日向立法预算委员会提交进度报告。
这些挑战的常规方法涉及增强分销网络。然而,主要和二级设备的重大升级和重建可能需要更长的建筑时间表和大量投资。此外,由于反向功率的短时间和分配变压器的过载问题,升级设备的利用效率仍然相对谦虚。PV逆变器的反应性调节能力可用于减轻比例很高的PVS分配网络中的过电压问题[6]。在[7]中提出了将单相DPV逆变器与不同阶段连接到不同阶段的分布式反应性补偿方法。但是,即使可以缓解过电压问题,此方法也无法管理供需方面之间的实际功率不平衡。此外,传统的交流分布网络通过更改互连开关的状态来实现电力传输;但是,它们在短时间内的表现有限[8]。回应,学者提出了灵活互连的概念,以替代传统开关,从而通过灵活的功率传递有效地适应PV [9-11]。
多能源微电网 (MEMG) 具有提高能源利用效率的潜力。然而,分布式可再生能源引起的不确定性带来了对多能源协同优化的迫切需求,以确保安全运行。本文重点研究 MEMG 的分布式鲁棒能源管理问题。利用不同能源部门的各种灵活资源来缓解不确定性,然后提出了一种基于数据驱动的 Wasserstein 距离的分布式鲁棒联合机会约束 (DRJCC) 能源管理模型。为了使 DRJCC 模型易于处理,提出了一种优化的条件风险价值 (CVaR) 近似 (OCA) 公式,将联合机会约束模型转化为易于处理的形式。然后,定制一种迭代顺序凸优化算法,通过调整 OCA 来降低解的保守性。数值结果说明了所提模型的有效性。
• 电池更换式纯电动汽车的技术和经济可行性已在中国市场得到检验和认可。这种加油模式可将 EHT 的购买价格降低 50%。 “车辆和电池独立”商业模式意味着运营商只需支付车辆费用,而电池则由电池组拥有和处理,供运营商租用。它通过降低纯电动汽车的运营和维护成本来创造经济效益。它提高了时间和资源利用效率,因为更换电池只需五分钟。与充电模式相比,它还需要更少的能源和土地资源。它提供更安全的电池管理和更高的电池生命周期价值。集中充电提高了电池使用的安全性,并将电池使用寿命延长了 20%。它可以根据配电网的需求更好地安排电池充电。循环市场也正在启动——赋予电池第二次生命业务。
2024年GFI和高地经济学的分析描述了用替代蛋白质多样化的土地利用效率和恢复机会,以帮助实现美国的气候和生物多样性目标。在2023年,GFI和Bright Green Partners发布了一份关于植物性肉类制造能力分析和扩展途径的联合报告。此分析量化了现有的全球植物肉类制造局势,并评估了扩大能力以满足未来需求的最可行选择。GFI还与Integration Consulting合作启动了发酵制造能力分析,该分析描述了全球发酵衍生的产品制造环境和策略,以有效地扩展制造能力,以满足未来的需求。GFI发表了一项强大的侧语分析,该分析标识了商品作物“废物”,该作物可以成为替代蛋白质生产的投入,从而导致成本降低和更好的环境指标。
现代人为影响和气候变化导致的牧场退化问题要求寻找新的、对环境安全的解决方案。利用生物刺激素创造一年生牧草的技术是一种很有前途的恢复和提高牧场生态系统生产力的方法。在哈萨克斯坦南部进行的研究表明,生物刺激素,尤其是发酵牛粪的生物刺激素具有很高的效率。与传统的矿物肥料(N 20 P 20 K 20)相比,生物刺激素 MERS 和 Bio-Bars 不仅有助于提高绿地产量,而且还通过刺激有益微生物群落的生长来改善土壤特性。这使得创建能够抵抗负面环境影响的自我再生牧场系统成为可能。这项研究的新颖之处在于将生物刺激素的使用与有机废物发酵相结合的综合方法。这种方法不仅提高了资源利用效率,而且还促进了封闭的生产循环,最大限度地减少了对环境的负面影响。
Snow Barlow 教授是一位农业科学家,其研究领域包括植物水分利用效率、气候变化对农业的影响以及全球粮食安全。他是墨尔本大学园艺和葡萄栽培学教授、ATSE 和澳大利亚农业科学研究所研究员。2009 年,他被授予澳大利亚农业科学奖章,并作为澳大利亚科学技术协会主席,担任总理科学、工程和创新委员会委员。他目前担任维多利亚州科学、知识和创新基金会主席以及农业部碳农业未来 RD&E 计划专家顾问小组主席。Barlow 教授曾担任 ARC 生物科学委员会委员和两家农村工业研究与开发公司的董事会成员。Kelvin Montagu 博士曾在澳大利亚和亚洲的农业、园艺和林业领域担任研究和管理职务,专门研究森林和农业景观中的碳和水循环。他目前经营 Colo Consulting,通过研究和教育项目为森林和农业景观提供自然资源成果。
基因组编辑的最新进展极大地促进了开发生物技术作物以实现更可持续的粮食生产的努力。CRISPR/Cas 是最通用的基因组编辑工具,它已显示出创造基因组修饰的潜力,这些修饰范围从基因敲除和基因表达模式调节到等位基因特异性改变,以设计出具有多种改良农艺性状的优良基因型。然而,一个常见的瓶颈是将 CRISPR/Cas 递送到不易转化和再生的作物。最近提出了几种技术来克服转化顽固性,包括 HI-Edit/IMGE 和编码形态发生调节剂的基因的异位/瞬时表达。这些技术可以消除使作物无法进行基因组编辑的障碍。在这篇综述中,我们讨论了作物基因组编辑的进展,特别关注使用技术来改善复杂性状,例如玉米的水分利用效率、干旱胁迫和产量。
受资源禀赋制约,中国能源消费严重依赖煤炭。2018年,中国消费了19亿油当量吨煤炭,占世界煤炭消费量的50%,煤炭消费占中国一次能源消费的58%,远高于世界27%的平均水平。2大规模的煤炭消费不仅导致中国的大气污染问题日益严重,而且导致碳排放迅速增加。2018年,中国的二氧化碳排放量是美国(原世界最大排放国)的1.83倍,占全球年二氧化碳排放量的27.8%。中国当前和今后一个时期的能源发展规划都要求大幅减少煤炭在一次能源消费中的比重,提高煤炭利用效率。 2006 年 1 月颁布的《可再生能源法》推动了中国风能和太阳能光伏发电的快速发展,并促进了该行业制造业的发展,这些制造业为全球提供这些技术。该法律创造了一个可再生能源
摘要 电机效率需要多样化的范式集成,以通过精度、能量优化和可靠性促进机器人应用的进步。先进的控制策略,如人工智能驱动的预测机制、谐波驱动系统和电机性能的实时反馈工具,强调了机器人技术所需的效率。作为机器人电机的集体作用,这些方法可以实现精确的扭矩和速度调节、对环境变化的动态适应以及受控策略中的节能运行。了解电机效率的理论基础可以指导在工业和制造过程自动化中选择和实施机器人技术的决策。比较机器人角色分析可以精确优化技术,以利用动态响应能力和能源利用效率。实现先进电机控制的方法强调了将智能算法与创新电机设计相结合的潜力,以提高机器人在复杂情况下的依赖性。先进的控制策略展示了机器人解决方案在流行技术应用中对效率、适应性和相关性的需求。