CSIR-IMMT 概况:CSIR-矿物与材料技术研究所 (IMMT) 成立于 1964 年 4 月 13 日,最初是位于印度东部布巴内斯瓦尔的区域研究实验室,由新德里科学与工业研究理事会 (CSIR) 赞助。2007 年,该研究所更名,重新确定了研究重点和发展战略,力争成为矿物与材料资源工程领域的领导者。该研究所擅长开展基础研究和技术导向项目,涉及广泛的主题,旨在解决采矿、矿物和金属行业的研发问题并确保其可持续发展。过去十年,CSIR-IMMT 研发的主要重点是通过公私合作 (PPP) 方式提供先进的零浪费工艺知识和自然资源商业开发咨询服务,帮助印度工业应对全球化挑战。如今,CSIR-IMMT 已成为许多矿物工业的首选。它还在先进材料加工领域开辟了新天地,以实现更高的附加值,并致力于提高关键原材料的资源利用效率。
基因组编辑是生物科学领域的一项新技术,它使研究人员能够精确编辑任何生物体中自然存在的基因等位基因。在植物科学领域,它有潜力培育出资源利用效率更高、抗逆性更强、质量和产量更高的新型设计作物。要充分利用这种新育种工具的优势,培训该特定研究领域的人力资源至关重要。考虑到这一点,本培训课程专为学生设计,将介绍植物基因组编辑的基础知识,概述 CRISPR 生物学的一般原理以及使用 CRISPR-Cas9 作为植物基因组编辑工具。学员将在指导 RNA 设计、载体选择、载体构建、农杆菌介导的植物转化、突变体鉴定和突变株系的分子表征等方面获得实践经验。该领域的杰出研究人员将分享这项即将推出的技术的成功案例和未来前景。学员将了解与基因组编辑技术相关的伦理问题以及实践该技术的现行立法指南。
印度科学与工业研究理事会 (CSIR) 矿物与材料技术研究所 (IMMT) 成立于 1964 年 4 月 13 日,最初是位于印度东部布巴内斯瓦尔的区域研究实验室,隶属于新德里科学与工业研究理事会 (CSIR)。2007 年,该研究所更名,重新确定了研究重点和发展战略,力争成为矿物与材料资源工程领域的领导者。该研究所擅长开展广泛领域的基础研究和技术导向项目,以解决采矿、矿物和金属行业的研发问题并确保其可持续发展。过去十年来,CSIR-IMMT 研发的主要重点是通过公私合作 (PPP) 方式提供先进的零浪费工艺知识和自然资源商业开发咨询服务,帮助印度工业应对全球化挑战。如今,CSIR-IMMT 已成为许多矿物工业的首选。它还在先进材料加工领域开辟了新天地,以实现更高的附加值,并致力于提高关键原材料的资源利用效率。
过量的氮会促进水稻非生产性分蘖的形成,从而降低氮利用效率 (NUE)。通过平衡氮吸收和生产性分蘖的形成来开发高 NUE 水稻品种仍然是一个长期挑战,但这两个过程如何在水稻中协调仍然难以捉摸。在这里,我们将转录因子 OsGATA8 确定为水稻氮吸收和分蘖形成的关键协调因子。OsGATA8 通过抑制铵转运蛋白基因 OsAMT3.2 的转录来负向调节氮吸收。同时,它通过抑制分蘖的负调节因子 OsTCP19 的转录来促进分蘖的形成。我们将 OsGATA8 -H 确定为高 NUE 单倍型,具有增强的氮吸收和更高比例的生产性分蘖。OsGATA8- H的地理分布及其在历史种质中的频率变化表明其适应肥沃的土壤。总体而言,这项研究为NUE的调控提供了分子和进化方面的见解,并有助于培育具有更高NUE的水稻品种。
摘要:本文研究一套基于业务流程的竞争情报系统,旨在通过高效的数据采集、处理和分析,帮助企业在激烈的市场环境中获取有价值的战略信息。随着互联网的快速发展,企业面临的信息量急剧增加,如何筛选出具有实用价值的信息成为一大难题。为此,本文深入分析企业的具体需求,提出了系统架构的三个模块:情报采集、情报处理和情报服务。情报采集通过关键字搜索、URL抓取实现初步的信息收集,并结合文本处理技术对数据进行清洗、结构化,提高数据的准确性。在此基础上,本文提出了信息转换标准,并采用机器学习中的SVM分类算法和K-means聚类算法对文本数据进行精细分类和非监督聚类,从而优化信息管理和分发。该系统能有效提高信息收集利用效率,帮助管理者在复杂的市场环境中做出更准确的决策,具有重要的应用价值。
(SHRI ARJUN MUNDA)(a) & (b):是的,先生。自 2014 年起,印度农业研究理事会 (ICAR) 旗下的国家农业研究系统已推出 2380 个不同大田作物品种,其中 1971 个品种为谷物(913)、油籽(335)、豆类(364)、饲料作物(106)、纤维作物(189)、甘蔗(54)和潜在(未充分利用)作物(10),这些作物具有气候适应性,可耐受一种或多种生物和/或非生物胁迫。其中,429 个大田作物品种对极端非生物胁迫具有很强的耐受性,包括干旱/水分胁迫(240);涝渍/淹没(72);盐碱/钠土(58);高温(42)和寒冷/霜冻(17)。同期还培育了487个园艺作物品种,包括22个气候抗逆品种:耐高温品种6个(马铃薯和番茄各2个,菠菜和萝卜各1个);耐旱品种12个(木薯4个,椰子3个,芋头2个,大山药、白山药和红薯各1个);马铃薯水分利用效率品种3个,木薯耐盐品种1个。
海得拉巴 ICAR、ATARI、Zone X 主任 Shaik N Meera 博士讨论了世界土壤日及其主题“关爱土壤:测量、监测、管理”。他表示,自然农法是留给子孙后代的健康地球母亲。通过提高土壤碳含量和水分利用效率,NF 中的土壤微生物和生物多样性得到增加。他介绍了 NMNF(国家自然农法),在 NMNF 下,将在 Krishi Vigyan Kendras (KVKs)、农业大学 (AUs) 和农民田地建立约 2000 个 NF 模范示范农场,并由经验丰富且训练有素的农民主培训师提供支持。感兴趣的农民将在模范示范农场接受 NF 实践包的培训,包括 NF 投入品的准备和在 NF 农民田地中的实践。约 187.5 万名经过培训的农民将利用自己的牲畜或从生物资源中心 (BRC) 采购,准备 Jeevamrit、Beejamrit 等投入品。将部署约 30,000 名 Krishi Sakhis,以提高集群中经过培训的农民的认识、动员和指导。
航空发动机压气机的设计重点是巡航飞行阶段的性能。当发动机运行状态偏离设计状态时,压气机需要将气流保持在限制范围内并防止失速和喘振的系统 [13]。为了确保这一点,有效的方法之一是引入 VBV 系统,该系统已广泛应用于现代大涵道比涡扇发动机,大多位于助推器出口处。对于 VBV 以能量利用效率换取助推器喘振裕度而言,VBV 位置控制功能既影响发动机性能也影响发动机安全性。因此,该功能应体现发动机性能和安全性之间的平衡。如果 VBV 位置控制功能执行不正确,将影响发动机性能和发动机安全性。尽管如此,VBV 位置控制功能应满足 FAR33 中规定的最低安全要求。因此,本文仅研究安全系数的方法是合理的。航空发动机在瞬态过程中的失效机理非常复杂,这使得航空发动机的安全性分析很难完成。VBV位置控制功能失效将通过发动机重匹配过程影响整个发动机,而发动机重匹配过程受发动机非线性方程控制。经验,
高效利用自然资源被认为是可持续利用自然资源的必要条件。延长产品寿命和循环利用资源是提高资源利用效率的两种常用策略。这两种策略通常被认为可以独立地提高资源利用的生态效率。我们认为,由于产品中嵌入的资源,转向循环经济会为消费者保留其产品带来机会成本。假设消费者是理性的,我们开发了一个模型,该模型可以确定产品的最佳更换时间,以最小化随时间推移的平均成本。我们发现,在完全循环的经济中,消费者会比在完全线性的经济中更快地被激励丢弃他们的产品。我们发现的直接结果是,延长产品使用时间与循环经济中的资源闭环直接冲突。我们认为废弃产品的残值和技术进步是决定资源闭环对产品使用时间影响的两个因素。本文强调了资源闭环和转向更循环的经济会激励更多不可持续行为的风险。
无服务器功能-AS-A-Service(FAAS)为客户提供了改进的性能性,但它并不是服务器“少”,并且以更复杂的基础架构管理(例如,资源提供和调度)的成本为云提供者。为了维持服务级别的目标(SLO)并提高资源利用效率,最近的研究集中在应用在线学习算法(例如加固学习(RL))来管理资源上。尽管最初的应用RL取得了成功,但我们首先在本文中表明,最先进的单代理RL算法(S-RL)在多租户无服务器FAAS平台上遭受高达4.8×较高的P99功能延迟降低,与在培训过程中无法融合。然后,我们基于近端策略选择(SIMPPO)设计并实施一个可扩展和增量的多代理RL框架。我们的实验表明,在多租户环境中,SIMPPO使每种RL代理在训练过程中有效收敛,并提供在线功能延迟性能,可与S-RL的S-RL隔离培训相当(少量降解(<9.2%))。在多租户情况下,与S-RL相比,SIMPPO将P99功能延迟降低了4.5×。