抽象的果蝇Melanogaster是探索宿主与微生物之间共生关系的宝贵模型。本综述总结了有关果蝇肠道微生物群的维持机制,生理角色和营养不良的最新发现。果蝇的肠道微生物群是通过饮食中的微生物的连续摄入量与其在肠道中的定殖和增殖之间保持的。果蝇的活性氧(ROS)产生和抗菌肽(AMP)的不同途径在识别致病性和共生微生物中起着至关重要的作用。肠道菌群对果蝇的生理功能有重大影响。在幼体阶段已经报道了促进生长的作用,肠道菌群也表现出各种成人果蝇的功能。由衰老或疾病引起的肠道菌群异常导致肠道炎症和肠道屏障功能降低,导致寿命缩短。 此外,已经建议营养不良影响神经退行性疾病模型的病理。 使用果蝇的肠道微生物群研究的未来进步有望阐明宿主微叶相互作用的基本机制。 关键词:肠道菌群;抗微生物肽;活性氧;寿命;本能行为; drosbiosis;果蝇由衰老或疾病引起的肠道菌群异常导致肠道炎症和肠道屏障功能降低,导致寿命缩短。此外,已经建议营养不良影响神经退行性疾病模型的病理。使用果蝇的肠道微生物群研究的未来进步有望阐明宿主微叶相互作用的基本机制。关键词:肠道菌群;抗微生物肽;活性氧;寿命;本能行为; drosbiosis;果蝇
演讲者:Hatakeyama-Sato博士,Kan (Dep。材料科学与工程学,东京科学研究所)标题:利用基础模型将化学实验转换为数据空间材料科学与工程学,东京科学研究所)标题:利用基础模型将化学实验转换为数据空间
本文件由全威尔士治疗和毒理学中心 (AWTTC) 和威尔士政府编写,随后得到全威尔士药物战略小组 (AWMSG) 的认可。如有任何疑问,请联系 AWTTC:全威尔士治疗和毒理学中心劳特利奇学术中心兰多大学医院彭兰路兰多格拉摩根谷 CF64 2XX awttc@wales.nhs.uk 029 218 26900 本文件中的信息可能会接受审查,并可能随时更新或撤回。AWTTC 和 AWMSG 对使用其内容不承担任何责任。本文件中提供的信息可以使用以下引用复制:全威尔士药物战略小组。最大限度地利用生物仿制药带来的机会:威尔士国家战略。2023 年 1 月。版权所有 AWTTC 2023。保留所有权利。
在聚合物机械化学领域 [10,11],OFP [12,13] 可以实现光学可视化,并监测不同材料体系(从传统的热固性材料和热塑性材料 [14–18] 到蛋白质)内不同长度尺度上的机械诱导事件。[19–23] 在机械生物学领域也可以找到类似的概念。[24–27] 在施加力时,OFP 会发生构象、构型或组成键异构化反应,从而改变其在吸收、荧光或化学发光方面的光学性质。[28] 材料科学中高分辨率显微镜技术的出现甚至使我们能够追踪亚微米尺度的宏观材料损伤。[29–37] 因此,OFP 有助于开发具有改进性能的材料方法。 [38] 尽管 OFP 已成功用于研究合成和生物大分子材料的损伤,但令人惊讶的是,尚未使用 OFP 研究粘合剂的失效。现有的研究粘合剂疲劳和断裂的方法[39]包括目视检查、[40] X 射线光电子能谱、[41,42] 质谱 (MS)、[43,44] 傅里叶变换红外光谱、[42,45] 和接触角测量。[42] 然而,这些技术都无法对胶水成分的机械状态提供空间分辨的光学反馈。我们在此报道了一种由阳离子力响应蛋白 FRET 对和阴离子芳香族表面活性剂的静电共聚形成的生物胶。[46,47] 因此,我们将 FRET 供体荧光团连接到力响应的 FRET 受体荧光蛋白。在机械测试过程中,施加力会改变 FRET 效率,从而改变发射光谱以及供体荧光寿命。我们使用这些蛋白质粘合剂粘合高能和低能表面,以对其断裂行为进行详细的光学分析。机械损伤
摘要世界目前面临着多个相互联系的全球环境危机。这些危机中的两个是生物多样性丧失 - 环境中独特生活的降低和气候变化。这些越来越多的挑战威胁着生态系统完整性,功能和韧性,以及人类健康,安全和福祉。基于自然的解决方案提供了全面和创新的策略,可以通过保护,管理和恢复生态系统来解决这些融合危机。例子包括湿地恢复,造林,海洋保护区和农林业(将树木和灌木的故意整合到农作物和动物养殖系统中)。此信息简要介绍了基于自然的解决方案是有效的策略,以帮助实现全球气候变化的缓解目标。实施基于自然的解决方案支持《联合国气候变化,巴黎协定和生物多样性公约》的承诺。更广泛地采用基于自然的解决方案将有助于打击物种丧失,生态系统退化,污染以及与气候有关的危害和灾难,从而使生物多样性和人类福祉受益。
自文明诞生以来,我们依靠农业来维持生计、提供医疗保健和获取资源。然而,在气候驱动的农业挑战中,传统的农业实践已不足以满足不断增长的人口的需求。微藻成为希望的灯塔,提供可持续和可再生的食物、动物饲料和能源来源。它们生长迅速、对非耕地和非饮用水的适应性强,生物产品种类多样(包括生物燃料和营养保健品),使它们成为未来资源管理的基石。此外,微藻捕获碳的能力符合环境保护目标。虽然微藻提供了显著的好处,但成本效益高的生物质生产障碍仍然存在,这限制了其更广泛的应用。本综述将微藻与其他宿主平台进行了比较,强调了当前旨在克服现有障碍的创新方法。这些方法包括一系列技术,从基因编辑、合成启动子和诱变到通过转录因子进行选择性育种和代谢工程。
由于世界人口的增长,能源消耗迅速增加,工业能源消耗也随之增加。目前,印度尼西亚仍然使用化石燃料作为主要能源,由于化石燃料的不可再生性,持续使用化石燃料会导致稀缺问题。生物乙醇生产目前越来越激烈,这是因为有几个因素导致它更加激烈,即市场稳定性、低成本、可持续性、替代能源燃料的组成和化石燃料的灾难性枯竭。西米废料可用作环保的可再生资源。西米废料的生物乙醇生产过程使用酶和微生物发酵。西米废料的生物乙醇生产过程主要有四个部分。首先要做的是预处理过程,即干燥西米浆和脱木素过程。脱木素过程中的样品随后将用于水解过程,催化剂为 HCl。水解产物在 pH 为 5 时发酵,并加入带状酵母。然后,在蒸馏过程中需要滤液,然后使用 K2Cr2O7 试剂对其进行定性评估。使用面包酵母和湿西米渣发酵过程中得到的混合物可产生高达 45.70% 的生物乙醇水平。通过面包酵母发酵过程从西米废料中制造生物乙醇的过程有望帮助推动生物乙醇生产过程成为印度尼西亚的可再生能源。
许多自然发生的微生物(细菌,霉菌,真菌)会导致健康不良。常规和反复接触高浓度的生物溶质可能会导致呼吸道疾病的发展,包括哮喘,炎症和气道刺激,眼睛的刺激和胃肠道疾病。表1下面详细介绍了暴露于暴露的一般健康状况(这些状况并非特定于浪费和回收利用)。在一系列行业(包括废物和回收,尤其是堆肥)中,与Bioaerosol暴露相关的健康问题众所周知。虽然没有阈值限制以高于事实证明健康影响的阈值限制,但可能存在剂量反应关系,这意味着产生最高暴露的过程更有可能导致健康状况不佳。表1。总结报告了暴露于暴露的健康状况
Alessandro Butté 在意大利米兰理工大学获得理学硕士学位,在瑞士苏黎世联邦理工学院获得化学工程博士学位。在美国佐治亚理工学院完成博士后研究后,他加入苏黎世联邦理工学院担任高级科学家。2008 年,他加入 Lonza 担任小分子和多肽领域下游技术主管,后来担任项目经理。2013 年,他重返苏黎世联邦理工学院担任讲师,2017 年,他与他人共同创立了 DataHow AG,并担任首席执行官。他是 90 多篇国际同行评审期刊论文和多项专利的作者。2015 年,他在圣加仑大学获得高级工商管理硕士学位。