摘要:化石燃料价格上涨、分布不均、焚烧产生的环境问题以及能源安全保障不足是绿色能源发展的主要驱动力。农业废弃物是能源生物加工的丰富资源,有助于改善循环经济的运作。本研究以以下指标为主要指标:可再生能源的份额及其收益、生物质的循环利用系数以及二氧化碳排放量的减少。强调了向日葵废弃物用于能源目的的方式。结果表明,在热电联产厂焚烧向日葵残渣生产沼气可实现最高的综合生态和经济效益。沼气厂发酵后剩余的残渣应用于生物肥料。这样的循环系统不仅可以全面处理所有生物质废弃物,大大减少向日葵种植和加工过程中的二氧化碳排放,还可以将技术过程中使用的可再生能源份额提高至 70%。
2.2.5.e 对于应力集中区域的元件,即开口的拐角、主要支撑结构构件的肘板的趾部和跟部,在计算航海载荷工况(S + D 设计组合)的屈服利用系数时,材料的屈服应力不应大于 315 N/mm 2。当使用高强度钢不能提高高循环载荷下结构细节的疲劳强度时,这可用作控制高循环疲劳损伤的隐性方法。在许多情况下,由于结构中允许的应力较高,使用高强度钢建造的结构细节的疲劳损伤实际上比使用低碳钢建造的结构细节更严重。这种对高强度钢屈服强度利用的限制不适用于港口/油罐试验载荷工况(S 设计组合)。这些载荷工况所代表的相关失效模式是低周疲劳(重复屈服),可能由于加载/卸载顺序而发生。对于低周疲劳,疲劳强度随屈服强度的增加而增加,并且与材料的屈服强度成正比。另请参阅 2.3.5.h。
2.2.5.e 对于应力集中区域的元件,即开口的拐角、主要支撑结构构件的肘板的趾部和跟部,在计算航海载荷工况(S + D 设计组合)的屈服利用系数时,材料的屈服应力不应大于 315 N/mm 2。当使用高强度钢不能提高高循环载荷下结构细节的疲劳强度时,这可用作控制高循环疲劳损伤的隐性方法。在许多情况下,由于结构中允许的应力较高,使用高强度钢建造的结构细节的疲劳损伤实际上比使用低碳钢建造的结构细节更严重。这种对高强度钢屈服强度利用的限制不适用于港口/油罐试验载荷工况(S 设计组合)。这些载荷工况所代表的相关失效模式是低周疲劳(重复屈服),可能由于加载/卸载顺序而发生。对于低周疲劳,疲劳强度随屈服强度的增加而增加,并且与材料的屈服强度成正比。另请参阅 2.3.5.h。
摘要:超级电容器与电池相结合的混合电源具有更高的功率密度,在脉冲供电系统中有着广泛的应用。本文提出了一种具有全电流型控制策略的超级电容器/电池半主动混合储能系统 (HESS)。所研究的 HESS 由电池、超级电容器和双向降压-升压转换器组成。转换器的控制方式是超级电容器提供负载功率脉冲,电池提供稳定状态的功率。为了实现超级电容器对负载功率脉冲的快速补偿,在控制系统中设计了一个基于滞环控制理论的功率分配模块。此外,该控制策略不需要转换器和超级电容器的模型参数,因此简化了控制系统。还介绍了所提出的 HESS 的完整配置方案和成本分析。结果表明,所提出的超级电容器/电池半主动 HESS 在动态响应、重量和能量利用系数 (EUC) 方面具有良好的性能。