AHRTI 工作说明 AHRTI-EPA 项目名称 使用氢 (H2) 和二氧化碳 (CO2) 化学反应转化技术评估制冷剂破坏技术 关于 AHRTI 空调、供暖和制冷技术研究所 (AHRTI) 是一个非盈利组织,旨在开展公共利益科学研究。AHRTI 的使命是促进技术应用研究,以改进产品、系统和控制,造福供暖、通风、空调、制冷 (HVACR) 和热水领域的广大公众。AHRTI 是与空调、供暖和制冷研究所 (AHRI) 相关的实体。AHRI 是一个全国性贸易协会,代表全球行业内的 HVACR 和热水设备制造商。背景
the Compressor and or Other Components....................................................................................................................... 10 2.6 Ventilation and or Circulation Fans Within Cases or Walk-in Units.................................................................................. 11 3 Summary ............................................................................................................................................................................... 14 4 References ............................................................................................................................................................................ 14 Trademarks SimpleLink ™ and LaunchPad ™ are trademarks of Texas Instruments.所有商标都是其各自所有者的财产。
在过去的五年中,世界各地的数十家政府机构都开发了路线图,以达到零净碳排放。有些人将这些计划授予法律武力。大多数(如果不是全部)要求使用当今可用的节能热泵技术在大多数建筑物中对化石燃料的空间和供水设备和电器进行电气化。在2021年在美国建造的近100万户单户住宅中,有39%的房屋具有空气源热泵(美国人口普查2022)。,在美国大约10%的住房单元中安装了热泵,在高加热负荷的区域中,热泵仅以大约2%的速度使用(NREL 2022)。这可能是由于较旧的热泵系统无法满足高加热负荷的能力,并且可能导致持续不愿在非常寒冷的地区采用这项技术。
大多数建筑空调和热泵系统都使用制冷剂工作液来冷却和加热建筑物。当今最常用的制冷剂,称为氢氟化合物(HFCS)具有很高的全球变暖潜力(GWP),并且需要用低gwp或“天然”溶液代替,以减少温室气体(GHG)的排放,同时也保持能量效率。这些制冷剂在释放到大气时会导致温室气体排放,这促使政府开发Phasteown计划以支持脱碳和能源效率目标。本文总结了美国的供暖,通风和空调(HVAC)制冷剂的状态,包括当前的政策和计划,制冷剂分类和安全标准,低和超低的GWP技术发展以及未来的机会继续减少排放。然后,本文讨论了美国,欧洲和亚洲的超低(<150 GWP)工作流体和高效率解决方案的HVAC技术的可用性和持续开发。
能源消耗是蒸气压缩制冷系统中的主要问题。在许多商业和住宅应用中,冷却系统现在消耗大量能源。因此,立即需要提高冷却系统的能源效率。这项研究通过将纳米颗粒溶解在聚熟料(POE)油中,创建了三个不同的石墨烯 - 氧化物纳米化剂样品,浓度为0.1、0.3和0.5 g/L。然后,分别使用30、40和50 g R600A(异丁烷)制冷剂的纳米化浓度进行测试。结局与聚滤器(POE)油对比,该油作用是主要的润滑物质。根据结果,在0.3 g/l的0.3 g/l石墨烯 - 氧化物纳米化剂中的40克质量电荷表现出最大的性能,最大制冷效应为0.197719 kW,最高的性能系数(COP)为1.72,系统最低的功率为0.115 kW。因此,纯聚酯(POE)油可以用蒸气压缩系统中的石墨烯 - 氧化纳米化剂代替。
图1。VRF热泵系统的亮点与热恢复[2]在同一建筑物设计上的两层和三管系统之间的不同管道布局[3]。3图3。Product data from Ventacity Energy/Heat Recovery System ........................................................ 6 Figure 4.DOAS温度控制方案来自Ashrae DoAs设计指南........ 7图5。基线模型中不同HVAC系统类型的分布...................................................................................................Coverage of applicable buildings for the upgrade ....................................................................... 14 Figure 7.VRF DOAS configuration represented in this upgrade ............................................................... 14 Figure 8.Single curve approach versus dual curve approach (COP based on compressor and outdoor unit fan power only) ...................................................................................................................... 17 Figure 9.VRF室外单位性能比较:加热能力和COP Comp&Fan,Design ....................... 18图10。VRF室外单位性能比较:冷却能力和COP Comp&Fan,设计...................................................................................................................................................................................................................................................................Cooling EIR (or COP) curve derivation and validation ............................................................ 20 Figure 12.Rated COP derivation based on sized capacities ....................................................................... 22 Figure 13.doas温度设定点建议形式ASHRAE DOAS设计指南........ 25图14。Comparison of annual site energy consumption between the ComStock baseline and the upgrade scenario .................................................................................................................... 35 Figure 15.Comstock基线和升级方案的温室气体排放比较... 36图16。Percent site energy savings distribution for ComStock models with the upgrade measure applied by end use and fuel type ............................................................................................ 37 Figure 17.Site EUI savings distribution for ComStock models with the upgrade measure applied by end use and fuel type .................................................................................................................... 38 Figure 18.Comparison of the ComStock baseline and the upgrade scenario in terms of peak demand change .................................................................................................................................... 40 Figure 19.VRF额定和设计COP Comp&Fan的分布,设计......................................................................................................................................................... 41图20。Distribution of VRF annual average COP comp&fan,operating ............................................................ 42 Figure 21.用电阻加热的VRF补充加热的分数分布............................................................................................................................... 42图22.Distribution of annual average heating COP system,operating ........................................................... 43 Figure 23.Distribution of unmet hours to heating and cooling setpoints ................................................... 43 Figure 24.Distribution of VRF piping configurations................................................................................ 44 Figure 25.Distribution of VRF indoor and outdoor unit counts ................................................................. 45 Figure A-1.Site annual natural gas consumption of the ComStock baseline and the measure scenario by census division ....................................................................................................................... 49 Figure A-2.Site annual natural gas consumption of the ComStock baseline and the measure scenario by building type .......................................................................................................................... 49 Figure A-3.Site annual electricity consumption of the ComStock baseline and the measure scenario by building type .......................................................................................................................... 50 Figure A-4.Site annual electricity consumption of the ComStock baseline and the measure scenario by census division ....................................................................................................................... 50
高效的供暖和制冷系统以及可再生能源对于有效设计净零能耗住宅 (NZEH) 至关重要。该研究建议使用带有液压热回收功能的多功能变制冷剂流量系统 (MFVRF-H2R) 来减少供暖、通风和空调 (HVAC) 和热水的能量使用,从而提供一种实现 NZEH 解决方案的实用方法。利用基于光伏 (PV) 的现场发电来实现住宅建筑的零能耗性能。进行了建筑能量模拟研究,以评估组合系统在不同气候条件下的有效性。为了开发模拟模型,美国国家标准与技术研究所 (NIST) 的净零能耗住宅测试设施被用作 NZEH 基线模型的基准。MFVRF-H2R 系统被纳入 NZEH 基线,以提出一种具有热回收技术的更节能的设计。使用 eQUEST 和后处理计算来模拟 NZEH 性能,比较采用 MFVRF-H2R 的基线模型和替代模型的整栋建筑能源最终使用和 PV 容量。结果表明,所提出的基于可变制冷剂流量 (VRF) 的 NZEH 设计可在各种气候区下节省高达 32% 的制冷能源。此外,与不采用 VRF 热回收技术的 NZEH 设计相比,采用所提出的 MFVRF-H2R 的 NZEH 设计可使生活热水使用量减少高达 90%。研究表明,MFVRF-H2R 系统可通过最大限度地减少热浪费并将其重新用于建筑的其他热部分(如热水应用)来提供实用且切合实际的解决方案,从而提高 HVAC 的节能效果。因此,本研究强调了 MFVRF-H2R 系统在设计 NZEH 时考虑热回收和可再生能源技术的有效性。 [DOI: 10.1115/1.4062765]