摘要 抗生素耐药性的日益普遍引起了人们对使用药用植物治疗细菌感染的重新关注。本研究旨在研究由药用植物制备的制剂的抗菌特性,包括干提取物、生物活性物质和精油。进行了文献综述以确定相关研究,并使用各种方法评估了不同植物制剂的抗菌活性。总体而言,结果表明,由药用植物制备的制剂具有相当强的抗菌特性,可能有助于治疗细菌感染。
Developing a new cancer immunotherapeutic preparation using cell membrane vesicles A research group consisting of Professor Kagotani Yuki and dedicated lecturer Ito Yusuke, Department of Cancer Immunology, Institute of Advanced Medical Sciences, Keio University, and Associate Professor Ota Seiichi, Graduate School of Tokyo, and Chitose of the Aichi Cancer Center, have successfully developed nanoparticle-sized cell membrane vesicles that activate immune cells and attack cancer as a new treatment for cancer.
根据本许可条款,您可以复制、重新分发和改编本作品用于非商业目的,但前提是按以下方式适当引用本作品。在使用本作品时,不得暗示世卫组织认可任何特定组织、产品或服务。不允许使用世卫组织徽标。如果您改编本作品,则必须根据相同或等效的知识共享许可对您的作品进行许可。如果您翻译本作品,则应在建议的引用中添加以下免责声明:“本译文不是由世界卫生组织(世卫组织)创作的。世卫组织对本译文的内容或准确性不承担任何责任。原英文版应为具有约束力的正版”。
摘要简介:在过去的几十年中,微生物多药耐药性(MDR)已成为许多药物方案中的关键疗法之一。由于这种现象,制药行业,畜牧业和农业行业都受到了某种影响。材料和方法:使用Schrodinger Maestro 9.1软件程序进行了具有指定配体的分子对接研究。蛋白质制备向导用于制备选定的受体。结果:对接模拟揭示了蛋白质配体相互作用曲线中许多元素的重要性,例如氢键,亲脂接触,金属相互作用,PI-PI相互作用和PI-cation相互作用。评分函数是在计算化学和分子建模中使用的快速近似数学算法,以预测两个分子对接后两个分子之间非共价接触的强度。结论:这项研究的发现可能有助于理解这些赋形剂可能的P-GP抑制活性的分子机制。目前的发现将通过使用任何P-gp底物药物分子以及体外和体内研究的配方开发来进一步验证,以获得最终确认。
摘要。本文介绍了微生物制剂对根际生物学活性的影响和冬季小黑麦的生产力。根据使用微生物制剂,米佐蛋白,rzhf品牌的根瘤菌和FZHF品牌的微生物制剂的背景,研究了冬季小麦根际生物学活性的微生物和生化指标。数据揭示了有关使用农业的氮微生物和放线菌的数量的增加,关于微米菌的生长,放线菌的生长,用米佐蛋白治疗时,用氨基化的微型机器人来处理rhiiz的数量时,将rhiiz的数量与rhizh进行了rhizh时,将纤维素降解的微生物进行了处理。提供了有关微生物制剂对冬季小卵石酶酶库的有益作用的数据。当使用药物根瘤菌品牌RZHF,转化酶和过酶时,当用药物根瘤菌品牌FZHF,多酚氧化酶和过氧化物酶处理时,注意到磷酸酶和过氧化物酶的高活性。结论是关于尿素酶活性的减少以及实验所有变体的生产力元素指标的增加。
chantaleela(CTL)是一种泰语传统药物,由8种药草和婆罗洲组成,用于治疗发烧。这项研究旨在通过使用高性能液相色谱法(HPLC)建立简单但全面的方法来控制CTL产品的质量。构建了CTL的HPLC指纹,用于评估定性参数的鉴定和化学分析。此方法在量化CTL识别标记的成分(包括Eurycomanone,Loureirin A,Imperatorin和Afteryolodin)方面是高度精确且准确的。使用此开发方法评估了泰国商业CTL产品的质量。色谱模式与已建立的参考指纹明显不同。在每种商业产品中都发现了替代Artemisia vulgaris替代Artemisia Annua。此外,标记化合物的低含量反映了商业产品的质量差。关键字:Chantaleela,HPLC指纹,质量控制,传统医学,组合性草药制剂1。简介
Research group including Professor Kagotani Yuki and Specialized Lecturer Ito Yusuke, Department of Cancer Immunology, Keio University School of Medicine, has successfully developed nanoparticle-sized cell membrane vesicles that activate immune cells and attack cancer as a new treatment for cancer, through collaboration with Associate Professor Ota Seiichi of the University of Tokyo, and Chito Oneyama, Head of the Department of Oncology Control at Aichi癌症中心。
本报告提出了一个科学研究项目的结果,该项目旨在提供所需的数据,以评估与混合食品制剂中未煮过的冷冻产品相关的微生物风险(尤其是混合饮料,甜点,蘸酱)。直到最近,冷冻农产品才被认为是高风险食品。然而,近年来涉及冷冻水果或蔬菜的重大暴发的发生引起了新西兰食品安全(NZFS)对冷冻农产品安全的一些担忧。此外,新西兰的消费趋势的变化以及冰沙和类似食物制剂的流行度增加了新西兰消费者使用和消费冷冻产品的更多信息。尽管许多报告和同行评审都研究了与新鲜农产品相关的微生物风险,但缺乏有关与冷冻产品相关的特定食品安全风险的信息。这项研究回顾了有关与冷冻农产品消费相关的暴发的可用数据。NZF在2020年和2021年也进行了三项调查。前两项调查收集了有关家庭消费者和食品服务业务中未煮熟的混合食品制备中使用冷冻原始农产品的数据。第三次调查调查了新西兰进口和国内冷冻原始农产品的供应链。爆发数据的综述表明,被食源性病毒污染的冷冻浆果是关注的主要农产品类别和病原体。不需要对其他冷冻水果和蔬菜进行其他微生物调查。来自家庭和食品服务调查的发现证实了使用冷冻水果,尤其是浆果的总体趋势,以制备和消费冰沙和类似的混合食品。关于冷冻农产品的爆发数据和调查结果,强烈支持考虑冻结浆果的加强食品安全风险管理措施,以保护新西兰公众的健康。从该研究项目中收集的数据将帮助NZFS风险经理了解与混合食品制剂中未煮过的冷冻农产品相关的微生物风险。这些数据对于正在进行的进口冷冻浆果的风险管理控制控制和开发将特别有用。
摘要目的:标准化基于激素的种子涂料制剂的剂量,以增强香菜种子的发芽和幼苗生长。研究设计:完全随机的设计。研究地点和持续时间:印度哥印拜陀泰米尔纳德邦农业大学种子科学技术系。方法论:香菜种子用不同浓度的基于激素的种子涂料聚合物涂覆,并以四种复制的滚动毛巾法进行了发芽研究。结果:基于激素的种子涂料配方的发芽率%(69%),根长度(16.75厘米),芽长(7.9厘米),干物质产量(0.058 g/10幼苗),活力指数I(1706)和II(1706)和II(3.9)和10g Polymer/kg polymer/kg polymer/kg of Seed exeed of Edeepy of Seedeed of Seed和290ml and 290ml。结论:用10克激素的种子涂料制剂溶解在290 mL水中的种子涂层增强了种子发芽和幼苗生长关键词:[Coriandrum sativum,种子涂料,剂量,剂量,发芽,活力] 1。引言Coriandrum sativum属于家庭apiaceae。它通常被称为香菜,也是印度最重要的香料作物之一。它的叶子用于烹饪目的[1]。它是在全球培养的,用于种子,叶子用作种子被用作香味果实和调味剂[2]。香菜具有广泛的药用特性,包括催眠,抗焦虑,抗惊厥作用,安替尼德剂。它还可以增强记忆力,进展,口头运动障碍,并提供抗菌,神经保护性,抗真菌和驱虫剂益处。此外,香菜表现出杀虫剂,抗氧化剂,抗炎,降低性,心血管,抗糖尿病和镇痛特性[3]。种子的增强是指收获后治疗,这对于播种时的发芽改善,幼苗的生长和缓解种子的递送至关重要[4]。种子涂层被认为是通过增强种子的生理和物理品质来促进可持续农业的有效方法。此过程有助于提高种植效率,提高生长参数,并减轻非生物胁迫和生物应力[5]。
摘要:糖尿病(DM)是一种代谢性疾病,其特征是血糖水平异常,是由于缺乏胰岛素分泌,胰岛素作用受损或两者的结合而引起的。DM的发病率正在增加,导致全世界的年度医疗保健成本数十亿美元。当前的治疗剂旨在控制高血糖并将血糖水平降低到正常水平。但是,大多数现代药物都有许多副作用,其中一些引起严重的肾脏和肝脏问题。另一方面,富含花青素的天然化合物(Cyanidin,delphinidin,malvidin,pelargonidin,pelargonidin,peonidin和petunidin)也用于预防和处理DM。然而,缺乏标准化,稳定性差,不愉快的味道和吸收降低导致生物利用度较低已阻碍花青素作为治疗剂的应用。因此,纳米技术已用于更成功地递送这些生物活性化合物。本综述总结了花青素在预防和治疗DM及其并发症的潜力,以及使用纳米基本化的花青素传递的策略和进步。