太空制导和姿态控制以及地面制导和控制的先进系统和部件领域正在以惊人的速度发展。这些领域的文献数量每隔一到三年就会翻一番。为了应对有限技术领域的这种爆炸式增长,该行业既需要个人聚会场所,也需要出版论坛来展示当前的工作。技术期刊中的常规出版渠道可以满足后者的目的,但是,除了偶尔的调查或辅导处理外,普通技术论文的目的并不是提供整个领域的综合图景。因此,该领域(在本例中为制导和控制)的通常文献不能充分反映该领域的发展,也不能清晰地描绘出当前最受关注的领域。实际上,孤立的技术论文给人的视角与观看电影胶片的单帧相同——也许是重要的画面,但不能完全替代偶尔播放整部电影。
1. 介绍导航、制导和控制的概念 2. 熟悉航空航天飞行器的各种制导和控制方式 3. 学生还可通过设计飞行控制系统来学习实现的动态目标。 4. 熟悉火箭和导弹的控制原理 5. 深入了解航天器的机动 课程成果:
根据前八次开发飞行的经验,检查了指令舱和登月舱中阿波罗导航、制导和控制系统某些方面的状态。本文涵盖了惯性、光学和计算机硬件操作的各个方面。检查了这些硬件子系统在数字自动驾驶仪、会合导航、中段导航和进入中的应用。这些系统被认为已完全准备好帮助宇航员登陆月球。
计算机组织为二进制、十五位(位)“通用”计算机,采用并行字传输和单地址指令,指令和数据存储在一个公共内存体中,该内存体由几千字的固定有线内存和大约一千字的可擦除内存组成。后者包括少量可寻址的中央寄存器。
会议提案:会议提案应以单个文档的形式提交,其中包括会议标题和一页或两页的摘要说明,其中描述了会议的动机和相关性。文档应包含会议组织者的联系信息以及每篇论文的详细信息,包括标题、作者、作者所属机构以及描述论文的几句话。请注意,SCITECH 会议很少超过六篇论文,因此较大的提案可能需要多次会议。受邀会议主席将直接通知组织者其会议的接受/拒绝。请注意,受邀研讨会也在有限的基础上进行考虑,可能包括受邀演讲和重点研讨会讨论 - 如果获得批准,将提供有关提交过程的其他说明 - 最鼓励讨论涉及多个领域(例如太空、航空等)共同主题的研讨会。
回想我在这篇论文的发展过程中所走过的路,我知道有很多我觉得我应该感谢的人,他们一直帮助和支持我。我首先想到的是 Marco Lovera 教授,在我的代尔夫特之旅中,他从不缺乏专业和道义上的支持,让我完成了这一挑战。我在这个空间里说的任何话都不足以表达对马蒂亚的感谢。如果没有你们的帮助、固执和慷慨,我永远不会成功,你们是最黑暗时刻的灯塔。衷心感谢西蒙娜·巴尔迪博士给我机会演讲一个我如此珍视的话题,这让我有机会在新的大学环境中成长很多。显然,拥抱我一直可以信赖的所有朋友,并与他们分享了我的部分冒险经历:从我的副驾驶巴萨克,到戴维德,再到忍受了我几个月的拉福,乔治, Ludo、Michele、Gianlu、Dani,你们的存在一直鼓励我尽力而为。感谢Marra (: ¿),在我最曲折的时刻,他总是给我带来欢乐和热情。非常感谢在快乐和困难时刻帮助我的人,最重要的是给予我最后的推动;谢谢基亚拉。必须对我的父母和家人说一些特别的话。有你们在我身后就是一个
在存在不必要的干扰(例如风)和飞行器模型中的不确定性(例如空气动力学特性中的错误)的情况下实现制导命令。导航、制导和控制可以松散或非常紧密地耦合。松散耦合的系统可能类似于大型水面舰艇。舰船的导航系统确定当前位置、速度和航向。可以执行相当简单的制导计算来确定到达下一个目标位置的最有效的“大圆”路线。在这种情况下,控制系统是舰船的舵和轴,并发出命令以达到制导计算指示的所需速度和航向。然而,高速机动再入飞行器需要紧密耦合的系统。飞行器可以利用 INS 或 GPS 的测量值进行导航;同时,它可以根据更新的导航计算修改制导命令,并同时使用这些计算来评估控制律对飞行器的操纵效果,并在导航测量中出现错误时修改命令。
历元 1991.25。位置是在历元 2000 和 2016 创建的。Hipparcos 在历元 1991.25 与 Gaia_PM 匹配,并在历元 2016 与 Gaia_noPM 独立匹配。两次交叉匹配均使用 4 弧秒半径。结果发现 Hipparcos 恒星与几颗 Gaia 恒星匹配,反之亦然。在这些情况下,只保留最接近的匹配,其他匹配被视为独立恒星。一些 Hipparcos 恒星与 Gaia_PM 和 Gaia_noPM 恒星都匹配。同样,通过比较各自时期的匹配距离,优先选择最接近的匹配。在未来版本的星表里,可能会考虑利用交叉匹配中的恒星星等信息。100 颗 Hipparcos 恒星无法与 Gaia 匹配。它们中的大多数对于 Gaia 来说太亮了(72 颗的 Hp < 5 星等)。剩余的 28 颗恒星(其中 5 颗 < Hp < 13.8)尚未得到彻底研究,但以下是它们在盖亚中缺失的一些可能性:
通过星跟踪器对周期变星的观测来确定太空中迷失的位置和时间 (AAS-24-012) Linyi Hou,伊利诺伊大学厄巴纳-香槟分校 Siegfried Eggl,伊利诺伊大学厄巴纳-香槟分校 Ishaan Bansal,伊利诺伊大学厄巴纳-香槟分校 Clark Davis,伊利诺伊大学厄巴纳-香槟分校 RETINA:一种用于空间视觉传感器摄像机在环测试的高度通用光学设施 (AAS-24-013) Fabio Ornati,米兰理工大学 Paolo Panicucci,米兰理工大学 Eleonora Andreis,米兰理工大学 Francesco Topputo,博士,米兰理工大学 使用主动照明提示进行基于机器学习的姿态估计,应用于立方体卫星近距离操作 (AAS-24-014) Athip Thirupathi Raj,亚利桑那大学 – SpaceTREx Jaret Rickel,亚利桑那大学 – SpaceTREx Roshan Adhikari,亚利桑那大学 – SpaceTREx Jekan Thangavelautham,亚利桑那大学 单智能体和多智能体卫星检查问题的路径规划:低推力公式 (AAS-24-015) Ritik Mishra,普渡大学 Kenshiro Oguri,科罗拉多大学博尔德分校