无人机和巡飞弹(又称“自杀无人机”)对武装部队构成了重大挑战,最近的冲突就是明证。其中一个例子就是 HESA Shahed 136,这是一种低成本、高耐久性的巡飞弹,具有大载荷能力和精确打击能力。当前针对中短程空中威胁的系统大多依赖于传统的防空系统设计。这些系统是为了摧毁战斗机或直升机而开发的。因此,它们对付作战无人机的性能非常差,而且成本过高。另一方面,提供成本效益高的效应器的枪基系统射程有限,命中率低。最糟糕的情况是一群低成本无人机发动饱和攻击。
第 2 部分 / 2 e 部分防空控制中心 – 在定义中将“制导导弹”去掉,参见 TTF 2008-0031 中做出的决定。停止交战 – 在定义中将“制导导弹”去掉,参见 TTF 2008-0031 中做出的决定。作战可用飞机 – 将术语和定义全部更改为:作战可用飞机战斗准备就绪 – 将术语和定义全部更改为:战斗准备就绪战斗准备就绪飞机 – 将术语和定义全部更改为:战斗准备就绪飞机集装箱锚地码头 - 法语首选术语为“terminal de mouillage pour porte- conteneurs”。临界高度 – 在定义中将“制导导弹”去掉,参见 TTF 2008-0031 中做出的决定。诱饵 – 删除了承认的术语:假人 (TTF 1997-0002)。死区 2 – 在定义中将“制导导弹系统”改为“制导”,参见 TTF 2008-0031 中做出的决定。 地面控制拦截 – 在定义中将“制导导弹”改为“制导”,参见 TTF 2008-0031 中做出的决定。 作战规划 – 将当前条目更改如下: 作战规划 1 首选术语:作战规划 作战规划 2 首选术语:作战级规划 第 3 部分/3 e 运输终端搬运部分:添加认可术语“mouillage abrité pour transbordement (toléré)”
目前使用或正在开发的大多数防空系统都采用自导制导来拦截目标。由于使用机载数据收集,自导制导系统可以不断提高目标信息的质量,直至拦截点。制导导弹比任何单一设备都更能塑造当今世界的空天力量。例如,战斗机配备了机载武器,可以向敌机、地面部队或敌方领土深处的战略目标发射。此外,制导导弹还可以用作干扰武器,以混淆地面和空中部队。陆基导弹系统的射程从几英里到几千英里不等。这些陆基导弹是弹道导弹或非弹道导弹,具体取决于其任务要求。制导武器(即导弹)的设计是一项大工程,需要许多在空气动力学、飞行控制、结构和推进等领域拥有专业知识的工程师的团队合作。不同的设计团队必须共同努力,以高精度和低成本生产出最有效的武器。本书的目的是介绍制导导弹的基本概念,包括战术导弹和战略导弹,以及获取目标所需的制导、控制和仪表。从本质上讲,这本书是关于制导飞行的数学。这本书不同于类似的书籍
在防空导弹制导系统分析中,最重要的问题之一是选择一种制导空空导弹到达目标的方法。这相当于选择由所谓的制导算法确定的导弹飞行轨迹,即描述其运动所受约束的方程。理论上可以制定无数这样的算法。然而,在这些算法中,重要的是选择那些满足许多额外必要条件的算法,例如:最小过载、最小功率需求、制导算法实施的简易性等。通常,制导算法的制定是一项非常复杂的任务,通常只能用数字方法来解决。它只受空空导弹飞行动力学、控制电路动力学以及控制执行器动力学等复杂方程的影响。本文尝试分析防空导弹飞行控制的一种可能性,其方法类似于专利方案 [1] 中提出的方法,然后在论文 [2] 中进行了开发(图1)。
这篇论文由 Embry-Riddle Aeronautical University – Daytona Beach 在 ERAU Scholarly Commons 上免费开放给您。它已被 ERAU Scholarly Commons 的授权管理员接受并收录到论文 - Daytona Beach 合集中。如需更多信息,请联系 commons@erau.edu 。
• 两个挂载接口单元 (SIU),重 3.5 磅/总重 7 磅,位于货舱内 • 两个火箭接口单元 (RIU),重 3 磅/总重 6 磅,位于货舱内 SMS 的总重量仅为 24.2 磅。根据客户需求,挂载管理计算机通过 RS-422、MIL-STD-1553、ARINC-429 或以太网与多功能显示器和 MX-10D EO/IR 传感器和激光指示系统连接。对于 MD 530G 应用,SMS 支持最多 4 个武器站;包括机枪、非制导弹药和制导弹药的集成。具体武器系统包括: • Dillon Aero M134D-H 迷你枪, • FN Herstal 火箭机枪吊舱 (RMP) 和 FN Herstal 重机枪吊舱 (HMP-400), • Arnold Defense M260 7 发火箭吊舱。火箭系统的管理包括非制导和制导火箭变体,包括雷神 TALON 激光制导火箭。
摘要 这项工作研究了阿波罗计划的导航计算机,特别是阿波罗制导计算机。从硬件和软件方面进行了描述,并使用 NASA、麻省理工学院和其他参与开发的机构发布的文件以及我们自己的分析来分析其功能和稳健性。描述了载人太空旅行中计算机面临的危险,并讨论了由此产生的特殊功能。此外,还以阿波罗制导计算机的用户界面为例,介绍了载人航天用户界面的特点。为了能够充分讨论这个广泛的主题,这项工作采用了多层次的方法:既使用大量可用的历史文献进行调查,又使用专门为此目的创建的程序进行分析以及软件方法。这显示了阿波罗制导计算机的发展如何影响后来可靠地创建载人太空旅行硬件和软件的方法。相应地描述了当今用于载人太空旅行的计算机。由于阿波罗制导计算机不是一个孤立的系统,因此还提供了来自地面站的单独计算机。还涵盖了 20 世纪 60 年代发生的计算向分时系统的范式转变,因为这影响了阿波罗计划的导航计算机。最后,以电传操纵系统为例,介绍了阿波罗制导计算机开发的直接结果,并对可能的进一步开发进行了展望。