燃料当然属于这一分类),但对于阿波罗这样的有限能量飞行器来说,这一点值得怀疑,因为阿波罗需要高度精确和复杂的导航系统来确定往返月球的最有效路径或轨道。我们想用第三类来代替上面提到的两个极端。第三类可以称为“手动辅助”系统,它将结合人类和机器的最佳特性。为了说明这一观点,图B3 显示了人类与航天器在典型的中途星体-地标角度测量中的功能关系。对于这项任务,人类需要做到以下几点。
本文介绍了一种名为深度制导的新技术,它利用人工智能的一个分支——深度强化学习,使制导策略可以学习而不是设计。深度制导技术包括一种学习制导策略,该策略将速度命令提供给传统控制器进行跟踪。控制理论与深度强化学习相结合,以减轻学习负担并促进训练系统从模拟到现实的转移。在本文中,在模拟和实验中考虑了一个概念验证航天器姿态跟踪和对接场景,以测试所提方法的可行性。结果表明,这样的系统可以在模拟中完全训练并以相当的性能转移到现实中。
- 为成员国建议有效方式,以便利用其研究和开发能力为北约社区的共同利益服务; - 为军事委员会提供航空航天研究和开发领域的科学和技术咨询与援助(特别是在军事应用方面); - 不断促进与加强共同防御态势相关的航空航天科学进步; - 改善成员国在航空航天研究和开发方面的合作; - 交流科学和技术信息; - 为成员国提供援助,以提高其科学和技术潜力; - 根据要求,就航空航天领域的研究和开发问题向其他北约机构和成员国提供科学和技术援助。
1“nlupar,用于导弹拦截器战术制导的作战系统,呼吁采用先进的技术。进入二十世纪,新技术急于取代这些传统技术,而这些传统技术的影响因实践而不断扩大。未来拦截器的制导系统的规格似乎更像 e、e
提供了构建用于 UAV 制导的矢量场的通用技术,这些技术结合了 Lyapunov 稳定性特性,以在 3D 中产生简单、全局稳定的矢量场。说明了这些场在圆形徘徊模式中的使用,以及圆形徘徊矢量场的简单切换算法,以实现任意航路点路径或循环的跟踪。还开发了另一种变体,其中简单的圆形徘徊器被扭曲成其他形状,保留全局稳定性保证和准确的路径跟踪。提供了此技术的一个示例,该示例产生了“赛道”徘徊模式,并比较了扭曲技术的三种不同变体。最后,考虑矢量场的跟踪,使用 Lyapunov 技术展示与低成本 UAV 航空电子设备兼容的几种跟踪控制律的航向和路径位置的全局稳定性。
弹药作为传感器。目前,我们正在研究 Silent Eyes 成像炮弹,它将为我们带来宝贵的能力,即无需使用人工收集器即可接收实时战斗损伤评估 (BDA)。这种 155 毫米炮弹将携带一个消耗性成像传感器和一个数据传输链路,将彩色电视图像和 GPS 坐标发送回地面站进行传播。Silent Eyes 从任何 155 毫米平台发射,将使用无烟火箭助推器,将其沿着典型的弹道推进到 GPS 制导的搜索区域。一旦飞过目标区域,Silent Eyes 将开始滑翔、圆形下降,发回高分辨率视频。毫无疑问,如果资金获得批准,这种 BDA 收集能力将是一笔巨大的财富。
本文考虑的问题涉及小型和微型无人机 (UAV) 的基于视觉的自动驾驶仪的设计。所提出的自动驾驶仪基于基于光流的视觉系统,用于自主定位和场景映射,以及用于飞行控制和制导的非线性控制系统。本文重点介绍使用低分辨率机载摄像头和低成本惯性测量单元 (IMU) 开发用于估计光流、飞机自运动和深度图的实时 3D 视觉算法。我们的实现基于 3 个嵌套卡尔曼滤波器 (3NKF),可实现高效且稳健的估计过程。视觉和控制算法已在四旋翼无人机上实现,并在实时飞行测试中进行了演示。实验结果表明,所提出的基于视觉的自动驾驶仪能够利用从光流中提取的信息使小型旋翼机实现完全自主飞行。
研究经历 Sabatini 教授从事航空航天和智能交通系统研究,重点研究通信、导航和监视/空中交通管理 (CNS/ATM)、航空电子、机场技术和无人机系统 (UAS)。Sabatini 教授的研究取得了重大发现,包括空中/地面导航和制导的创新技术;最佳控制和轨迹优化;GNSS 完整性增强;航空通信;动态空域管理;军用 C4ISR;UAS 感知与避障;以及航空人为因素工程(认知人体工程学、可信自主性和增强的人为表现)。Sabatini 教授撰写了 300 多篇出版物,其中包括 5 本书籍、193 篇国际期刊和会议论文集文章、5 个书籍章节、21 篇受邀全体会议和主题演讲论文、33 场研究研讨会/教程和 94 份研究报告。在他的职业生涯中,他获得了多项科学奖项,包括北约研究与技术组织科学成就奖(2008 年)、SAE Arch T. Colwell 功绩奖(2015 年)和 SARES 科学奖(2016 年)。
Karl Brakora 是大峡谷州立大学的助理教授,也是 BT 工程公司的工程师。他曾研究过电路板的共形气相沉积 EMI/HPM 屏蔽、HEMP/HPM 的轻型复合飞机外壳以及非 GPS 定位系统和技术。此前,他于 2007 年至 2014 年担任密歇根州安娜堡 EMAG Technologies Inc. 的首席射频工程师。在那里,他致力于开发紧凑、低成本相控阵、超音速和高超音速弹药雷达指令制导的高速信号采集和处理以及先进的 PCB 封装技术领域的创新技术。此前,他是密歇根大学辐射实验室的研究生,他的研究重点是陶瓷原型技术、集成陶瓷微波系统以及超材料和光子晶体的应用。他为同行评审期刊撰写了四篇论文,并多次在会议上发表关于先进陶瓷制造技术在微波设备中的应用的演讲。 Brakora 博士拥有 5 项美国专利,并有多项未公开的专利和专利申请。
1.莱茵金属公司代表德国联邦国防军开发了“螳螂”(模块化、自动化和网络化瞄准和拦截系统)防空系统,该系统是“天盾”的改进版,配备六个全自动炮塔。据莱茵金属公司称,这是全球同类系统中最先进的,可以可靠地保护军事设施(如前沿作战基地和其他重要设施)免受来袭火箭弹、炮弹和迫击炮弹的袭击。莱茵金属防务,莱茵金属在防空领域取得新成功:中东和北非国家下达 8300 万欧元新订单(2016 年 10 月 6 日访问);可从 http://www.rheinmetall-defence.com/en/rheinmetall_defence/public_relations/news/archive_2014/details_5120.php 获取。2.在海上,“密集阵”近防武器系统是一种速射、计算机控制、雷达制导的火炮系统,旨在击败反舰导弹和其他近距离空中和地面威胁。陆基“密集阵”武器系统是美国陆军反火箭、火炮和迫击炮系统的一部分,用于在空中探测来袭炮弹击中地面目标之前将其摧毁。雷神公司,《密集阵近防武器系统——海陆空最后一道防线》(2016 年 10 月 6 日访问);可从 http://www.raytheon.com/capabilities/products/phalanx/ 获取。