脓毒症综合征由细胞和循环调节因子的复杂网络介导 (1, 2)。在急性期,炎症细胞因子(包括 TNF α、IL-1 β 和 IL-6)被释放到循环中,在那里它们介导发烧、白细胞增多、器官衰竭和分布性休克 (3, 4)。与促炎期相伴的是强大的反调节抗炎反应,它抑制炎症细胞因子的产生并抑制先天免疫功能 (5)。该免疫抑制期的主要介质包括 IL-1ra、IL-4 和 IL-10,而 TNF α 和其他促炎介质的基因表达受到抑制 (6, 7)。一些患者表现出称为持续性炎症、免疫抑制分解代谢综合征 (PICS) 的特征性矛盾症状群 (6, 8)。其他患者会出现长期的免疫抑制期,其特征是这些抗炎细胞因子的持续表达、促炎细胞因子的抑制和严重的先天免疫功能障碍(9, 10)。
简介程序性细胞死亡 1/程序性细胞死亡配体 1 (PD-1/PD-L1) 检查点阻断是一种很有前途的抗癌治疗方式 (1, 2)。然而,单药治疗(抗 PD-1 或 PD-L1 抗体)未能在许多肿瘤类型中引起有意义的反应,例如胶质母细胞瘤 (3)、胰腺导管腺癌 (PDAC) (4, 5) 和分化型甲状腺癌 (6)。开创性研究表明肿瘤浸润 CD8 + T 淋巴细胞是 T 细胞免疫疗法反应的主要预测指标 (7, 8)。因此,确定调节 CD8 + T 细胞浸润和功能的分子机制可能会拓宽免疫检查点疗法的治疗范围。巨噬细胞是肿瘤微环境 (TME) 中最丰富的免疫细胞类型之一 (9, 10)。一般而言,巨噬细胞可分为经典活化 (M1) 巨噬细胞或替代活化 (M2) 巨噬细胞 (9, 10)。虽然 M1 巨噬细胞可以产生促炎细胞因子并启动针对肿瘤细胞的免疫反应,但 M2 巨噬细胞和 TAM 往往会表现出免疫抑制表型,有利于肿瘤进展 (9, 10)。此前已证明,进入的 CD8 + T 细胞和 TAM 之间的物理接触会降低基质中 T 细胞的运动能力,从而限制其进入肿瘤巢 (11)。 TAM 还可以通过表达免疫检查点配体(例如 PD-L1)(12、13)、分泌免疫抑制细胞因子(例如 TGF-β、LIF、CCL22)(9、10)和限制 T 细胞增殖所需的代谢物(例如通过表达精氨酸酶-1 酶限制 L-精氨酸)(14-16)来抑制 CD8 + T 细胞功能。抑制或消耗 TAM 的努力已在几种临床前模型中显示出良好的抗肿瘤功效,因为它们可以增加 CD8 + T 细胞浸润并减少局部免疫抑制信号(11、17)。此外,TAM 可以限制
简介程序性细胞死亡 1/程序性细胞死亡配体 1 (PD-1/PD-L1) 检查点阻断是一种很有前途的抗癌治疗方式 (1, 2)。然而,单药治疗(抗 PD-1 或 PD-L1 抗体)未能在许多肿瘤类型中引起有意义的反应,例如胶质母细胞瘤 (3)、胰腺导管腺癌 (PDAC) (4, 5) 和分化型甲状腺癌 (6)。开创性研究表明肿瘤浸润 CD8 + T 淋巴细胞是 T 细胞免疫疗法反应的主要预测指标 (7, 8)。因此,确定调节 CD8 + T 细胞浸润和功能的分子机制可能会拓宽免疫检查点疗法的治疗范围。巨噬细胞是肿瘤微环境 (TME) 中最丰富的免疫细胞类型之一 (9, 10)。一般而言,巨噬细胞可分为经典活化 (M1) 巨噬细胞或替代活化 (M2) 巨噬细胞 (9, 10)。虽然 M1 巨噬细胞可以产生促炎细胞因子并启动针对肿瘤细胞的免疫反应,但 M2 巨噬细胞和 TAM 往往会表现出免疫抑制表型,有利于肿瘤进展 (9, 10)。此前已证明,进入的 CD8 + T 细胞和 TAM 之间的物理接触会降低基质中 T 细胞的运动能力,从而限制其进入肿瘤巢 (11)。 TAM 还可以通过表达免疫检查点配体(例如 PD-L1)(12、13)、分泌免疫抑制细胞因子(例如 TGF-β、LIF、CCL22)(9、10)和限制 T 细胞增殖所需的代谢物(例如通过表达精氨酸酶-1 酶限制 L-精氨酸)(14-16)来抑制 CD8 + T 细胞功能。抑制或消耗 TAM 的努力已在几种临床前模型中显示出良好的抗肿瘤功效,因为它们可以增加 CD8 + T 细胞浸润并减少局部免疫抑制信号(11、17)。此外,TAM 可以限制
表1:在所有调查的CQD中,计算的CBM和VBM电荷密度(%)作为在球体内部的正方形的积分(与NC的同心)中的正方形的积分,半径为50%至90%的NC Radius R范围为NC Radius R R(无论是Cation-还是Anion-rich-Rich)。为例,在半径为14°A的INP NC中(富含磅的表面)42%的CBM,并且只有7.9%的VBM位于半径为8.4°A的球体中(即60%R)。因此,我们得出的结论是,该点中的大多数VBM电荷密度都包含在其外部,即在内半径= 8.4°A和外半径= r的球形壳中。
摘要:集成能量收集器的片上微型超级电容器 (MSC) 对开发自供电无线传感器系统具有巨大潜力。然而,MSC 的传统制造技术与半导体制造技术不兼容,其中最显著的瓶颈是电极沉积技术。利用旋涂技术进行电极沉积已显示出在硅基板上提供多个互补金属氧化物半导体 (CMOS) 兼容 MSC 的潜力。然而,它们在基板上的电化学性能和产量有限一直是阻碍其后续集成的挑战。我们报告了一种简单的表面粗糙化技术,用于提高晶片产量和 CMOS 兼容 MSC 的电化学性能,特别是对于还原氧化石墨烯作为电极材料。在晶片基板上沉积并退火一层 4 纳米的铁层以增加表面粗糙度。与标准的非粗糙 MSC 相比,表面粗糙度的增加使电极厚度增加 78%,质量保持率提高 21%,旋涂电极的均匀性提高 57%,并且在 2 英寸硅基板上工作器件的产量高达 87%。此外,这些改进直接转化为更高的电容性能,并具有增强的速率能力、能量和功率密度。这项技术使我们更接近于在片上无线传感器电子设备的自供电系统中完全集成的 CMOS 兼容 MSC。
普查前 更新普查法规 组建普查指导委员会 设计和实施沟通和宣传策略 用户-制作人研讨会 制表计划 制定普查方法和问卷设计 手册 试点普查 准备框架/持有清单 印刷普查问卷和其他材料 分发材料 招聘实地工作人员 培训 普查 实地数据收集 从实地工作人员处收到问卷和其他材料并将其交给 CCO 普查后 普查后调查 初步结果