图 2. CTS Cas9 的 TCR 敲除效率高于供应商 A Cas9。将每个 Cas9 (7.5 pmol) 和靶向 alpha 和 beta T 细胞受体基因 (TRAC 和 TRBC) 区域的 Invitrogen ™ TrueGuide ™ 合成 sgRNA (7.5 pmol) 混合以创建 Cas9-RNP 复合物。每个 Cas9-RNP 复合物用于使用 Neon 转染系统 (货号 MPK5000) 转染 500,000 个 T 细胞。 72 小时后收获细胞,用 Invitrogen ™ eBioscience ™ 可固定活力染料 (FVD) 紫罗兰 (货号 65-0863-14) 和 eBioscience ™ 抗 TCR a/b 抗体 (货号 12- 9986-42) 染色,然后在 Invitrogen ™ Attune ™ NxT 流式细胞仪上进行分析,并使用基于 NGS 的 TAV 进行基因分型。 (A) TCR KO 效率的流式细胞术数据示例。与供应商 A Cas9 相比,CTS Cas9 的 KO 效率超过 88.7%,而供应商 A Cas9 的 KO 效率为 61.7%。 (B) 基于 NGS 的 TAV 的平均 KO 效率。与供应商 A Cas9 相比,CTS Cas9 在各种目标上实现了更高的平均 KO 效率。所有反应均重复进行三次 (** P < 0.01)。
改善单个新颖的过滤步骤的新型有效的初级恢复步骤取代了传统的3步主要恢复(絮凝ÖCentifuGationÖCENTRATION),该步骤缩短了处理时间&提高收率
1。简介添加剂制造(AM)现在是一种众所周知的,广泛采用的技术,用于使用逐层沉积进行预成型制造。应用领域包括航空航天,汽车,工具和模具,医疗和牙科等[1]。对于金属AM,关键过程包括材料挤出,粉末床融合,材料喷射(即带有金属颗粒和紫外线的光聚合物),粘合剂喷射(即液态状态粘合剂和粉末金属)以及有向能量沉积(DED),可以将其分类为固态/动力学/动力学/动力学/动力学和热量。基于热能的DED工艺使用激光束,电子束,等离子体或弧选择性地融化金属粉末或线原料。例如,与其他金属AM相比,钢丝弧添加剂制造(WAAM)应用气体金属电弧焊接(GMAW),气钨电弧焊接(GTAW)或等离子体弧焊接(PAW)以更高的速率和较低的成本沉积材料。
研究并报告了使用基于挤出的AM技术制造的添加性生产(AM)连续碳纤维增强热塑性(CFRTP)的完整机械性能(拉伸,压缩和剪切性能)。在各种机械测试中研究并报告了AM CFRTP的断裂模式。各向异性机械性能,纤维方向具有最高的强度和刚度,并且层方向具有最低的强度和刚度。使用实验中获得的机械性能设计和制造了概念拓扑验证的优化无人机起落架。进行的有限元分析和压缩测试表明,使用AM CFRTP制造的无人机起落架结构能够在操作过程中生存最极端的状况。
摘要:镜头阵列是一种多功能的光学元件,可以调节入射光,例如DI FF使用,光束塑形,灯光分裂和光聚焦,从而实现较大的视角,低像差,小失真,高时间分辨率,高时间分辨率和无限景点。同时,它具有重要的应用潜力,其形式,智能和集成电子设备和光学系统。在本文中,引入了镜头阵列的光学原理和发展历史,并审查了镜头阵列制造技术,例如墨水喷气式印刷,激光直接写作,丝网印刷,照片光刻,照片聚合,热融化回流和化学蒸气的沉积。显示了镜头阵列在成像传感,照明光源,显示和光伏字段中的应用进度。和本文提出了镜头阵列的开发方向,并讨论了新方向的发展趋势和未来挑战,例如弯曲镜头,叠加的复合眼系统以及镜头和新的OP到电子材料的组合。
缺席了五十年之后,NASA根据Artemis计划重返月球表面 - 用于长期的人类勘探和利用 - 正在为小型卫星和小型陆地平台提供商业和学术机会(例如,商业月球付费量服务计划 - CLPS)。双旋转剂推进器是一种可靠,低风险和飞行验证的方法,用于用于进入,下降和降落(EDL)或空间附近操作所需的复杂操作所需的推进和态度控制。但是,由于过去十年来竞争激烈的商业太空市场,卫星子系统还必须负担得起,以购买最终的任务设计和工程解决方案。Therefore starting in 2019, and based off prior satellite integration work, Aerojet Rocketdyne (AR) undertook an advanced propulsion development effort to combine modern metal additive manufacturing (AM) techniques with thrust scalable hypergolic MON-25 propulsion technology to create a high performance and fully integrated (i.e., multiple thrusters integrated into a single package) reaction control system (RCS) at a fraction of the production cost when compared to the由单个推进器组装的遗产设计。RCS设计的开发点来自一系列新型的添加性制造推进器系列,稳定地燃烧了5 lbf和100 lbf的推力水平,用单甲基羟基津(MMH)燃料燃烧挥发性MON-25氧化剂。在子系统级别的成本降低了零件和功能的AM集成,从而减少了材料的构建,触摸劳动和组装时间。此外,AM允许设计适应不断变化的要求,例如推进器的数量,方向和推力水平。通过利用MON-25的较低冰点为-55°C(与传统的二氧化二氧化氧化氧化氧化氧化剂相比)来降低卫星水平的成本,以最大程度地减少质量,热量和功率需求,同时在深空环境中运行。此外,对于MMH/MON-25的相等体积混合比率的推进器操作允许在操纵过程中采用模块化方法进行储罐设计和可预测的重心。本文概述了ISE-5和ISE-100 MON-25推进器技术,该技术为集成设计和AM RCS概念本身的开发进步提供动力。这包括减少练习活动,例如概念证明AM材料测试示威者和水流测试单元。
摘要 英国对钠离子电池 (SIB) 制造的需求不断增加,提高了人们对电池生产对环境的负面影响和成本的认识。然而,由于缺乏有关 SIB 生产的数据,因此很难评估这些数据。本研究有助于介绍英国特定的生命周期评估 (LCA),用于生产钠离子电池,该电池采用钠镍锰镁钛层状氧化物 (NMMT) 阴极和硬碳 (HC) 阳极,并将其与锂离子电池 (LIB) 生产与锂镍钴锰层状氧化物 (NCM) 阴极和石墨 (Gr) 阳极进行比较。
传统的pDNA发酵过程缓慢,产量比重组蛋白和抗体获得的产量要低得多,并且经常患有批次衰竭。的产量和质量也受质粒的大小和遗传有效载荷的性质的影响。纯化通常会耗时且因pDNA的尺寸和高负电荷而变得复杂,这会导致低流速和达到足够浓度的困难 - 这些问题在较大规模上会放大。此外,pDNA对剪切敏感,可能会发生拓扑变化,从而导致较高水平的非螺旋式同工型,其风险随着过程量表的增加而增加。此外,裂解步骤后存在的许多杂质具有与所需质粒相似的特性,并且在没有明显的产品损失的情况下很难去除。
摘要:随着行业4.0的发展,添加剂制造将被广泛用于生产定制组件。但是,使用反复试验的增材制造产生具有声音结构和良好机械性能的组件是相当耗时且昂贵的。要获得最佳的过程条件,需要进行大量实验来优化给定的机器和过程中的过程变量。数字双胞胎(DT)被定义为生产系统或服务的数字表示形式,或者只是以某些属性或条件为特征的主动独特产品。它们是协助克服添加剂制造中许多问题的潜在解决方案,以提高零件质量并缩短限定产品的时间。DT系统可能非常有帮助,可以理解,分析和改进产品,服务系统或生产。然而,由于许多因素,例如缺乏对DT概念,框架和开发方法的透彻理解,因此仍然阻碍了真正的DT的开发。此外,现有的Brown Filed Systems及其数据之间的链接正在开发中。本文旨在总结DT的当前状态和增材制造的问题,以便为随后的DT系统研究提供更多参考。
开发2019年冠状病毒病(COVID-19)大流行的疫苗引起了国会的关注,因为疫苗接种可能是预防疾病扩散的最有效方法之一。2020年11月18日,辉瑞(Pfizer/Biontech)宣布,临时分析发现,其新开发的疫苗“对Covid-19的有效性为95%”,此后已申请了美国食品和药物管理局的紧急使用授权(EUA)。2020年11月16日,现代宣布,其暂定评估为94.5%的疫苗也将提交EUA。根据媒体报道:“现代化说,到2020年底将准备2000万剂剂量;辉瑞说,到那时将有大约5000万。”提供COVID-19疫苗 - 复合物,特别制造和分布的产品 - 涉及大量的供应链考虑因素。所需的供应可能会受到限制,并且面临全球竞争。这种见解概述了生产疫苗和辅助疫苗接种材料所需的所选用品,这些供应可能构成供应链挑战,并描述了联邦政府在此过程中的作用。它不涵盖签发的特定合同,也不涵盖最终疫苗的运输,分发和管理所需的供应。