1 Research Unit, General University Hospital of Albacete, Health Service of Castilla-La Mancha (SESCAM), Albacete, Spain, 2 Molecular Oncology Laboratory, Molecular Medicine Unit, Associated Unit of Biomedicine, University of Castilla-La Mancha-Spanish National Research Council (UCLM- CSIC), Faculty of Medicine, Albacete, 39 cine, University of Castilla-La Mancha, Albacete, Spain, 4 Immunology Unit, Clinical Analysis Department, General University Hospital of Albacete, Albacete, Spain, 5 Microbiology Department, General University Hospital of Albacete, Albacete, Spain, 6 Research Unit, General University Hospital of Albacete, Albacete, National Parastatics of Toledo, Albacete, Spain, 7 Internal Medicine Department, General University Hospital of Albacete, Albacete, Spain, 8 Biomedicine Institute of UCLM (IB-UCLM), Faculty of Medicine, University of Castilla-La Mancha, Albacete, Spain, 9 Faculty of Pharmacy, Associated University of Castile-La Mancha, 10 of Biomedicine UCLM- CSIC, University of Castilla-La Mancha, Ciudad Real, Spain, 11 Neurology Department, General University Hospital of Albacete, SESCAM, Albacete, Spain, 12 Faculty of Medicine, University of Castilla- La Mancha, Albacete, Spain
我们探索了 UB-612 的加强免疫原性,UB-612 是一种多表位疫苗,含有 S1- RBD-sFc 蛋白和 Sarbecovirus N、M 和 S2 蛋白上序列保守的混杂 Th 和 CTL 表位肽。对于参与两剂 II 期试验的无感染参与者亚群 (N = 1,478)(年龄 18-85 岁),在第二剂后 6-8 个月给予 UB-612 加强剂(第三剂)。在加强剂后 14 天评估免疫原性,并监测总体安全性直至研究结束。加强剂诱导了针对活武汉 WT(VNT 50 ,1,711)和 Delta(VNT 50 ,1,282)的高病毒中和抗体;以及针对假病毒 WT(pVNT 50,11,167)和 Omicron BA.1/BA.2/BA.5 变体(pVNT 50,2,314/1,890/854)的抗体。老年人较低的原发性中和抗体在加强免疫后升高至年轻人的大致相同水平。UB-612 还诱导了强效、持久的 Th1 导向(IFN-γ + -)反应(峰值/加强免疫前/加强免疫后 SFU/10 6 PBMCs,374/261/444)以及细胞毒性 CD8 + T 细胞的强劲存在(峰值/加强免疫前/加强免疫后 CD107a + -Granzyme B +,3.6%/1.8%/1.8%)。这种 UB-612 加强免疫安全且耐受性良好,没有 SAE。
接受 Nuvaxovid 治疗的参与者和接受安慰剂治疗的参与者的人口统计学和基线特征是平衡的。在接受 Nuvaxovid 治疗的参与者的 PP-EFF 分析集中,中位年龄为 47 岁(范围:18 至 95 岁);88%(n=15,264)年龄在 18 至 64 岁之间,12%(n=2,048)年龄在 65 岁以上;48% 为女性;94% 来自美国,6% 来自墨西哥;76% 为白人,11% 为黑人或非裔美国人,6% 为美洲印第安人(包括美洲原住民)或阿拉斯加原住民,4% 为亚裔;22% 为西班牙裔或拉丁裔。16,493 名(95%)参与者存在至少一种与重症 COVID-19 风险增加相关的先前存在的合并症或生活方式特征。合并症包括:肥胖症(体重在 30 kg/m 2 以内);慢性肺病;2 型糖尿病、心血管疾病;慢性肾病;或人类免疫缺陷病毒 (HIV)。其他高风险
摘要。严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 刺突蛋白 (S) 在宿主细胞进入中起着关键作用。影响 S 的非同义替换并不罕见,并且已在许多 SARS-CoV-2 谱系中固定下来。这些突变的一部分能够逃避中和抗体,或被认为通过增加对细胞进入受体血管紧张素转换酶 2 (ACE2) 的亲和力等机制增强传播。新墨西哥州和路易斯安那州的独立基因组监测计划同时检测到大量 20G 分支(谱系 B.1.2)感染的快速增加,这些感染携带 S 中的 Q677P 替换。该变体于 10 月 23 日首次在美国发现,但在 2020 年 12 月 1 日至 2021 年 1 月 19 日期间,它分别占路易斯安那州和新墨西哥州测序的所有 SARS-CoV-2 基因组的 27.8% 和 11.3%。 Q677P 病例主要在美国中南部和西南部发现;截至 2021 年 2 月 3 日,GISAID 数据显示美国有 499 个该变体的病毒序列。系统发育分析显示至少六个不同的 Q677H 亚谱系独立进化和传播,首次采集日期从 2020 年 8 月中旬到 11 月下旬不等。来自 20G(B.1.2)、20A(B.1.234)和 20B(B.1.1.220 和 B.1.1.222)分支的四个 677H 分支每个分支包含大约 100 个或更少的测序病例,而一对不同的 20G 分支簇分别由 754 个和 298 个病例代表。尽管采样偏差和奠基者效应可能导致了 S:677 多态性变体的出现,但该位置与 S1/S2 边界的多碱基裂解位点的接近性与其在细胞进入过程中的潜在功能相关性一致,表明可能赋予传播或传播优势的特征的平行进化。总之,我们的研究结果表明了同步趋同进化,从而推动了进一步评估 S:677 多态性对蛋白水解加工、细胞趋向性和传递性的影响。
推荐的校准对照。血细胞分析包括 20 个参数:白细胞 (WBC)、淋巴细胞数 (LYM#)、中等细胞数 (MID#;MID 细胞包括与单核细胞、嗜酸性粒细胞、嗜碱性粒细胞、原始细胞和其他特定大小范围内的前体白细胞相关的较少出现和稀有细胞)、粒细胞数 (GRA#)、淋巴细胞百分比 (LYM%)、中等细胞百分比 (MID%)、粒细胞百分比 (GRA%)、红细胞 (RBC)、血红蛋白 (HGB)、平均红细胞血红蛋白浓度 (MCHC)、平均红细胞血红蛋白 (MCH)、平均红细胞体积 (MCV)、红细胞分布宽度-变异系数 (RDW - CV)、红细胞分布宽度-标准差 (RDW - SD)、血细胞比容 (HCT)、血小板 (PLT)、
尽管已开发出多种疫苗来遏制严重急性呼吸道综合征冠状病毒 2 (SARS-CoV-2) 在人类中的传播,但为动物(包括宠物)开发的疫苗却非常少。为了对抗人与动物、动物与动物和动物与人之间传播的威胁以及新的病毒变种的产生,我们开发了一种亚单位 SARS-CoV-2 疫苗,该疫苗基于在昆虫细胞中表达的重组刺突蛋白胞外结构域,然后与适当的佐剂配制而成。将 16 只 8–12 周龄的杂交雌性和雄性小猫(每组 n = 4)随机分为四个治疗组:仅刺突蛋白;刺突加 ESSAI 水包油 (O/W) 1849102 佐剂;刺突加氢氧化铝佐剂;和 PBS 对照。所有动物均间隔 2 周肌肉注射两次疫苗,每次注射 5 µ g 刺突蛋白,体积为 0.5 ml。在第 0 天和第 28 天,采集血清样本以评估抗刺突 IgG、抗体对刺突与血管紧张素转换酶 2 (ACE-2) 结合的抑制、针对野生型和 delta 变异病毒的中和抗体以及血液学研究。在第 28 天,所有组均通过鼻内方式接种 SARS-CoV-2 野生型病毒 10 6 TCID 50。在第 31 天,采集组织样本(肺、心脏和鼻甲)进行病毒 RNA 检测和病毒滴度测定。两次免疫后,两种疫苗均诱导高滴度血清抗刺突 IgG,可抑制刺突 ACE-2 结合并中和野生型和 delta 变异病毒。两种佐剂疫苗配方均能保护幼猫免受上呼吸道病毒的排出以及下呼吸道和心脏病毒的复制。这些令人鼓舞的数据值得继续评估疫苗保护猫免受 SARS-CoV-2 感染的能力,特别是防止传播的能力。
全球范围内,大多数国家已经报告了全国范围内的社区传播 [5]。这种传染性致病性病毒感染了全球 213 个国家和地区,感染了约 7,436,895 人,导致 417,861 人确诊死亡(2020 年 6 月 10 日,21:38 GMT),并发生了 2 起国际传播 [6]。新型 COVID-19 的出现导致对新抗病毒策略的需求增加 [7]。但迄今为止,尚未开发出可以预防或治疗这些病原体引起的感染的特定药物、疫苗和疗法 [8],[9]。
从构象上看,刺突糖蛋白以同源三聚体的形式排列在病毒表面 [29]。当 RBM 被隐藏时,构象称为向下(受体不可接近)(见图 1C)。然而,同源三聚体是不对称的,因为它们不断进行结构重排(向上构象),以将病毒膜与宿主细胞膜融合 [13]。当两个 RBD 结构域被隐藏(受体不可接近)时,一个 RBD 结构域暴露(受体可接近),称为向上构象(见图 1D)。这是因为 S1 的 RBD 经历了铰链状运动 [32]。在 SARS-CoV 中,有两个铰链位点被鉴定(铰链 1 位点(354-361)和铰链 2 位点(552-563),它们负责上下切换
开辟了快速识别潜在新型治疗方法的新途径 58,59 。分子建模技术和虚拟筛选可以明确地帮助药物重新定位工作。因此,面对 COVID-19 大流行的情况以及缺乏经过验证的治疗方法或疫苗,我们决定使用不同的生物信息学方法和我们新收集的约 8,000 种已批准和正在研究的化合物来寻找新型的潜在弗林蛋白酶抑制剂。抗真菌剂 Sulconazole 是在结构分析后确定的,并进一步发现它可以抑制主要细胞表面的成熟
新型严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 会引起病理性肺部症状。针对这种病毒的疫苗和药物的大多数开发工作都针对刺突糖蛋白,特别是其 S1 亚基,该亚基被血管紧张素转换酶 2 识别。在这里,我们使用内部开发的工具 CaverDock 使用低温电子显微镜结构 (PDB-ID: 6VXX) 和来自先前发布的分子动力学模拟的五个最密集簇的代表性结构对刺突糖蛋白进行虚拟筛选。配体数据集来自 ZINC 数据库,包括全球批准用于临床的药物。针对完整数据集计算了单个药物通过刺突糖蛋白同源三聚体通道的轨迹、它们在通道内的结合能以及它们与三聚体三个亚基的接触持续时间。然后使用多元统计方法建立结构-活性关系并选择运动抑制的最佳候选药物。这种用于快速筛选多状态蛋白质结构(6 种状态)中全球批准药物(4359 种配体)的新协议在完成计算的速度方面表现出很高的稳健性。该协议是通用的,可以应用于任何具有包含蛋白质隧道或通道的实验性三级结构的目标蛋白质。该协议将在 CaverWeb 的下一个版本中实现(https://loschmidt.chemi.- muni.cz/caverweb/),以便更广泛的科学界可以访问它。2021 作者。由 Elsevier BV 代表计算和结构生物技术研究网络出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons. org/licenses/by/4.0/)。