摘要 数据和自主系统正在接管我们的生活,从医疗保健到智能家居,我们日常生活中几乎没有哪个方面不受它们的影响。这些技术带来的技术进步是无限的。然而,优势与挑战并存。随着这些技术越来越多地涵盖我们生活的方方面面,我们忘记了将我们的生活与技术相结合所产生的伦理、法律、安全和道德问题。在这项工作中,我们研究了人工智能从数据收集到部署的生命周期,对潜在的伦理、安全和法律问题进行了结构化的分析评估。然后,本文提出了第一个道德人工智能可持续性声明的基础,以指导未来以安全和可持续的方式发展人工智能。
Gener..11 Electric 公司使用上述方法进行了两项特殊测试,以详细研究风车条件下的上整流罩分离情况 [5]。第一个测试采用 1/6 比例模型!结果显示,分离开始角对马赫数和雷诺数都有很大依赖性,如图 11 所示。接下来的问题是如何根据飞行雷诺数推断结果。因此,决定建造并测试一个新的 1/3 比例模型! (图 12 J:如图 11 所示,两个测试结果非常吻合,并且发现在 10 百万以上,起始分离角不再与雷诺数相关。
莱斯特医院是一家研究活跃的信托机构,因此您可能会发现您的病房或诊所正在进行研究。要了解研究的好处并亲自参与其中,请与您的临床医生或护士交谈,拨打 0116 258 8351 或访问 www.leicestersresearch.nhs.uk/patient-and-public-involvement
检测DNA是宿主防御的重要决定因素,也是自动弹性和自身免疫性疾病的驱动因素。未能在dnaseii或iii(trex1)中降解自DNA,从而导致CGAS刺激途径的激活。表达可改善疾病表现。然而,全身性红斑狼疮(SLE)在相对于内体TLR中的CGAS插入途径的贡献是有争议的。实际上,在FAS具有足够的SLE-Prone小鼠中,Sting缺乏效率未能营救,并实际上加剧了疾病表现。现在,我们将这些观察结果扩展到了i.p.诱导的SLE的慢性模型。注射TMPD(Pristane)。 我们发现,与CGAS刺激含量相比,CGA和刺激性不仅无法从TMPD诱导的SLE中拯救小鼠,而且导致自身抗体产生和蛋白尿水平更高,而蛋白尿水平则更高。 此外,我们使用CRISPR/CAS9在纯MRL/FAS LPR背景上产生了CGAS KO FAS LPR小鼠,发现疾病略微加剧,并且没有减弱。 我们假设CGAS插入途径会限制TLR激活,从而限制了这两个模型中的自身免疫性表现。 与此前提一致,与CGA或STING单一敲门动物相比,缺乏CGA和UNC93B1或Sting或Sting的小鼠会产生最小的全身自身免疫性。 尽管如此,B6小鼠中TMPD驱动的狼疮被废除了DNase I的AAV递送,暗示了DNA触发器。 总体而言,这项研究表明,CGAS刺激途径并不能促进SLE鼠模型中的全身自身免疫性。注射TMPD(Pristane)。我们发现,与CGAS刺激含量相比,CGA和刺激性不仅无法从TMPD诱导的SLE中拯救小鼠,而且导致自身抗体产生和蛋白尿水平更高,而蛋白尿水平则更高。此外,我们使用CRISPR/CAS9在纯MRL/FAS LPR背景上产生了CGAS KO FAS LPR小鼠,发现疾病略微加剧,并且没有减弱。我们假设CGAS插入途径会限制TLR激活,从而限制了这两个模型中的自身免疫性表现。与此前提一致,与CGA或STING单一敲门动物相比,缺乏CGA和UNC93B1或Sting或Sting的小鼠会产生最小的全身自身免疫性。尽管如此,B6小鼠中TMPD驱动的狼疮被废除了DNase I的AAV递送,暗示了DNA触发器。总体而言,这项研究表明,CGAS刺激途径并不能促进SLE鼠模型中的全身自身免疫性。这些数据对开发用于全身自身免疫性的CGAS定向疗法具有重要意义。
新型严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 会引起病理性肺部症状。针对这种病毒的疫苗和药物的大多数开发工作都针对刺突糖蛋白,特别是其 S1 亚基,该亚基被血管紧张素转换酶 2 识别。在这里,我们使用内部开发的工具 CaverDock 使用低温电子显微镜结构 (PDB-ID: 6VXX) 和来自先前发布的分子动力学模拟的五个最密集簇的代表性结构对刺突糖蛋白进行虚拟筛选。配体数据集来自 ZINC 数据库,包括全球批准用于临床的药物。针对完整数据集计算了单个药物通过刺突糖蛋白同源三聚体通道的轨迹、它们在通道内的结合能以及它们与三聚体三个亚基的接触持续时间。然后使用多元统计方法建立结构-活性关系并选择运动抑制的最佳候选药物。这种用于快速筛选多状态蛋白质结构(6 种状态)中全球批准药物(4359 种配体)的新协议在完成计算的速度方面表现出很高的稳健性。该协议是通用的,可以应用于任何具有包含蛋白质隧道或通道的实验性三级结构的目标蛋白质。该协议将在 CaverWeb 的下一个版本中实现(https://loschmidt.chemi.- muni.cz/caverweb/),以便更广泛的科学界可以访问它。2021 作者。由 Elsevier BV 代表计算和结构生物技术研究网络出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons. org/licenses/by/4.0/)。
CGAS丁字道在先天免疫中至关重要,尤其是在抗病毒反应和细胞应激管理中。CGA通过启动第二信使环循环GMP-AMP合酶(CGAMP)的合成作为细胞质DNA传感器,后来激活了STING途径,从而导致产生I型Interferons和其他细胞因子和其他细胞因子,并激活型肠道菌群的激活。最近的研究表明,泛素化变化密切调节CGAS刺激途径的功能。泛素化修饰影响CGA和刺激的稳定性和活性,同时还通过调节其降解和信号强度来影响免疫反应的准确性。e3泛素连接酶特异性地通过泛素化改变来促进降解或调节与CGAS刺激相关的蛋白的信号传导。此外,CGAS刺激途径的泛素化在各种细胞类型中具有不同的功能,并与NF-K B,IRF3/7,自噬和内质网应力接合。这种泛素介导的调节对于维持先天免疫的平衡至关重要,而过度或不足的泛素化可能会导致自身免疫性疾病,癌症和病毒感染。对CGAS插入途径内的泛素化过程进行了广泛的检查,阐明了其先天免疫中的特定调节机制,并确定了对相关疾病进行干预的新颖靶标。
报道称,这种冠状病毒上的刺突蛋白与胎盘上的另一种刺突蛋白(称为合胞素-1)相同,后者参与妊娠期间胎盘的生长和附着。这份虚假报告称,接种 COVID-19 疫苗会导致女性身体对抗这种不同的刺突蛋白并影响其生育能力。然而,这两种刺突蛋白完全不同,接种 COVID-19 疫苗不会影响寻求怀孕(包括通过体外受精方法)的女性的生育能力。
余云进 , 谢宇锋 , 杨锦兰 , 等 .基于 “ 热证可灸 ” 理论研究艾灸对胃 热证大鼠肠道微生态的影响 [ J ] .中国中医基础医学杂志 , 2020, 26(10): 1470-1474.YU Yunjin, XIE Yufeng, YANG Jinlan, et al.Study on the effects of moxibustion on intestinal microecology of rats with stomach heat syn- drome based on the theory of "moxibustion can be used on heat syn- drome" [ J ] .J Basic Chin Med, 2020, 26(10): 1470-1474.(in Chinese)
尽管已开发出多种疫苗来遏制严重急性呼吸道综合征冠状病毒 2 (SARS-CoV-2) 在人类中的传播,但为动物(包括宠物)开发的疫苗却非常少。为了对抗人与动物、动物与动物和动物与人之间传播的威胁以及新的病毒变种的产生,我们开发了一种亚单位 SARS-CoV-2 疫苗,该疫苗基于在昆虫细胞中表达的重组刺突蛋白胞外结构域,然后与适当的佐剂配制而成。将 16 只 8–12 周龄的杂交雌性和雄性小猫(每组 n = 4)随机分为四个治疗组:仅刺突蛋白;刺突加 ESSAI 水包油 (O/W) 1849102 佐剂;刺突加氢氧化铝佐剂;和 PBS 对照。所有动物均间隔 2 周肌肉注射两次疫苗,每次注射 5 µ g 刺突蛋白,体积为 0.5 ml。在第 0 天和第 28 天,采集血清样本以评估抗刺突 IgG、抗体对刺突与血管紧张素转换酶 2 (ACE-2) 结合的抑制、针对野生型和 delta 变异病毒的中和抗体以及血液学研究。在第 28 天,所有组均通过鼻内方式接种 SARS-CoV-2 野生型病毒 10 6 TCID 50。在第 31 天,采集组织样本(肺、心脏和鼻甲)进行病毒 RNA 检测和病毒滴度测定。两次免疫后,两种疫苗均诱导高滴度血清抗刺突 IgG,可抑制刺突 ACE-2 结合并中和野生型和 delta 变异病毒。两种佐剂疫苗配方均能保护幼猫免受上呼吸道病毒的排出以及下呼吸道和心脏病毒的复制。这些令人鼓舞的数据值得继续评估疫苗保护猫免受 SARS-CoV-2 感染的能力,特别是防止传播的能力。
在"⼤脑与机器"这⼀跨学科领域,通信⼯程的最新进展凸显了神经架构对⼯程进展的影响。这促使⼈们开始探索脑启发计算技术,尤其是⽣物识别(BCI)技 术。这些系统促进了活体⼤脑与外部机器之间的双向通信,能够读取⼤脑信号并将其转换为任务指令。此外,闭环BCI 还能以适当的信号刺激⼤脑。该领域的研 究涉及多个学科,包括电⼦学、光⼦学、材料科学、⽣物兼容材料、信号处理和通信⼯程。低维材料(尤其是⽯墨烯等⼆维材料)的特性进⼀步增强了脑启发电 ⼦学的吸引⼒,这些特性是未来类脑计算设备的基础。在⽣物识别(BCI)领域,通信⼯程在促进⼈脑与计算系统在数字通信、物联⽹、新兴技术、空间和IoX 设 备融合等不同领域进⾏⽆缝信息交换⽅⾯发挥着⾄关重要的作⽤。光⼦学和光⼦集成电路(PIC)是这⼀多学科研究中不可或缺的⼀部分,可为⽣物识别(BCI) 提供⾼速、节能的通信和⼀系列优势,包括⾼速数据传输、低功耗、微型化、并⾏处理和光刺激。这些特性使光⼦学成为⼀项前景⼴阔的技术,可推动脑机接⼝ 的发展,并在神经科学和神经⼯程领域实现新的应⽤。