出色的光吸收特性,中等带结构和良好的光电化学特性。然而,传统的Znco₂O₄在光催化co₂还原中的性能受到诸如低光催化活性和选择性不佳的因素的限制。因此,修改Znco₂o₄以增强其光催化性能已成为当前研究的重点。双金属氧化物材料通过结构合适的界面来扩大光催化剂的分离和运输,可广泛用于改善光催化剂的性能。通过探索Znco₂o₄的接口构建,可以优化其光吸收性能,从而改善Znco₂o₄的可见光利用;可以提高光生电子孔对的分离效率,从而降低电子孔重组。并且可以改善CO₂的吸附和激活。
周燕萍 ( 通信作者 ), 硕士 , 研究员 , 主要研究方向为半导体材料的刻蚀工艺开发 。E-mail:yanping_zhou@ ulvac. com
近年来,石墨烯纳米材料因其优异的电学和光电性能而引起了人们的广泛关注。基于等离子工程的石墨烯刻蚀可获得原子级薄层和极其洁净的表面,是一个热点问题,具有极高的工业应用价值。残留的污染物具有较高的固有粗糙度,导致性能下降。通过表面清洁方法和自上而下光刻逐层等离子刻蚀可以去除杂质。最近,基于新型等离子技术的刻蚀不会造成损坏并确保其π键,这对导电性和其他特性起着关键作用。因此,本章介绍了纳米材料(如石墨烯)新型刻蚀技术的最新进展以及基于这些技术的新兴应用。
钼和金双金属在微电子中用作互连导体。为了对双金属进行光刻蚀,首先用一种新的金蚀刻剂蚀刻金层,该蚀刻剂是由碘和碘化鎓在乙醇和水的混合物中的溶液组成。在金蚀刻过程中没有观察到钼层的溶解,因为蚀刻剂不会侵蚀钼。
摘要 利用 H 2 /NH 3 的反应离子束蚀刻 (RIBE) 系统蚀刻磁隧道结 (MTJ) 材料,例如 CoFeB、Co、Pt、MgO,以及硬掩模材料,例如 W 和 TiN。与使用纯 H 2(无蚀刻)和 NH 3 的蚀刻相比,使用 H 2 和 NH 3 的混合气体,尤其是 H 2 /NH 3 (2:1) 比例,可以观察到 MTJ 相关材料的更高蚀刻速率和相对于掩模材料的更高蚀刻选择性 (>30)。此外,在蚀刻的磁性材料表面上没有观察到明显的化学和物理损伤,对于通过 H 2 /NH 3 (2:1) 离子束蚀刻的 CoPt 和 MTJ 纳米级图案,可以观察到高度各向异性的蚀刻轮廓 >83 ◦,没有侧壁再沉积。与 H 2 离子束或 NH 3 离子束相比,H 2 /NH 3 (2:1) 离子束对磁性材料(如 CoFeB)的蚀刻速率更高,这被认为与挥发性金属氢化物(MH,M = Co、Fe 等)的形成有关,这是通过暴露于 NH 3 离子束中在 CoFeB 表面形成的 M-NH x(x = 1 ∼ 3)的还原形成的。人们认为,H 2 /NH 3 RIBE 是一种适用于蚀刻下一代纳米级自旋转移力矩磁性随机存取存储器 (STT-MRAM) 设备的 MTJ 材料的技术。
摘要:电感耦合等离子体反应离子刻蚀 (ICP-RIE) 是一种选择性干法刻蚀方法,用于各种半导体器件的制造技术。刻蚀用于形成非平面微结构 - 沟槽或台面结构,以及具有受控角度的倾斜侧壁。ICP-RIE 方法结合了高精加工精度和可重复性,非常适合刻蚀硬质材料,例如 SiC、GaN 或金刚石。本文回顾了碳化硅刻蚀 - 介绍了 ICP-RIE 方法的原理、SiC 刻蚀结果和 ICP-RIE 工艺的不良现象。本文包括 SEM 照片和从不同的 ICP-RIE 工艺获得的实验结果。首次报道了向 SF 6 等离子体中添加 O 2 以及 RIE 和 ICP 功率的变化对工艺中使用的 Cr 掩模的刻蚀速率和 SiC/Cr 刻蚀选择性的影响。 SiC 是一种极具吸引力的半导体,具有许多优异的性能,通过亚微米半导体加工技术的进步可以带来巨大的潜在利益。最近,人们对 SiC 产生了浓厚的兴趣,因为它在电力电子领域具有广泛的应用潜力,特别是在汽车、可再生能源和铁路运输领域。
摘要:电感耦合等离子体反应离子刻蚀 (ICP-RIE) 是一种选择性干法刻蚀方法,用于各种半导体器件的制造技术。刻蚀用于形成非平面微结构 - 沟槽或台面结构,以及具有受控角度的倾斜侧壁。ICP-RIE 方法结合了高精加工精度和可重复性,非常适合刻蚀硬质材料,例如 SiC、GaN 或金刚石。本文回顾了碳化硅刻蚀 - 介绍了 ICP-RIE 方法的原理、SiC 刻蚀结果和 ICP-RIE 工艺的不良现象。本文包括 SEM 照片和从不同的 ICP-RIE 工艺获得的实验结果。首次报道了向 SF 6 等离子体中添加 O 2 以及 RIE 和 ICP 功率的变化对工艺中使用的 Cr 掩模的刻蚀速率和 SiC/Cr 刻蚀选择性的影响。 SiC 是一种极具吸引力的半导体,具有许多优异的性能,通过亚微米半导体加工技术的进步可以带来巨大的潜在利益。最近,人们对 SiC 产生了浓厚的兴趣,因为它在电力电子领域具有广泛的应用潜力,特别是在汽车、可再生能源和铁路运输领域。
摘要:声学显微镜和声镊在微粒操控、生物医学研究和无损检测等领域有着重要的应用价值。超高频超声换能器是声学显微镜的关键部件,而声镊和声透镜又是超高频超声换能器的重要组成部分,因此声透镜的制备至关重要。硅具有声速高、声衰减小、可加工性好等特点,是制备声透镜的合适材料。前期研究中硅透镜主要采用刻蚀法制备,但刻蚀存在一些缺点,大尺寸刻蚀工艺复杂、耗时长、成本高,且垂直刻蚀优于球面刻蚀。因此,本文介绍了一种新的超精密加工方法来制备硅透镜。本文制备了口径为892 μm、深度为252 μm的硅透镜,并基于硅透镜成功制备了中心频率为157 MHz、−6-dB带宽为52%的超高频超声换能器。换能器焦距为736μm,F数约为0.82,换能器横向分辨率为11μm,可以清晰分辨硅片上13μm的狭缝。
本研究研究了脉冲CF 3 I/C 4 F 8 /Ar/O 2 电感耦合等离子体用于低k刻蚀,研究了C 4 F 8 /Ar/O 2 中添加CF 3 I对等离子体特性和低k材料刻蚀特性的影响。随着混合气体中CF 3 I/(CF 3 I + C 4 F 8 )比例的增加,等离子体中CF 3 自由基增多,CF 2 自由基减少,其中CF 3 自由基和CF 2 自由基分别与刻蚀和聚合有关。因此,SiCOH的刻蚀速率随CF 3 I比例的增加而增大。然而,当CF 3 I比例为0.5时,等离子体中的CF 2 /F通量比和聚合物层上的C/F比最高,因此对非晶碳层和光刻胶的刻蚀选择性在比例为0.5时最高。 SiCOH 损伤随 CF 3 I 比率的增加而减小,并且 SiCOH 损伤似乎非常低,特别是当 CF 3 I 比率≥0.5 时,Si–CH 3 键损失低、F 渗透低、表面粗糙度低。因此,与仅使用 C 4 F 8 /Ar/O 2 气体混合物相比,将 50% CF 3 I 混入 C 4 F 8 /Ar/O 2 气体混合物中不仅可以产生相对于掩模材料的高蚀刻选择性,而且还可能减少蚀刻损伤。
摘要 在以HNO 3 为氧化剂的HF溶液中,银催化刻蚀p型硅变得更加容易。在浸入刻蚀剂溶液之前,在p-Si(100)表面化学沉积银(Ag)。通过在HF/HNO 3 中染色刻蚀,在p-Si上也生成了多孔硅层(PSL)。采用电化学阻抗谱(EIS)、扫描电子显微镜(SEM)、能量色散X射线(EDX)、原子力显微镜(AFM)和X射线衍射(XRD)来评估所生成的PSL的性能。根据SEM,浓度为1×10 −3 M的Ag +离子是在HF/HNO 3 中化学刻蚀之前在Si上沉积的最佳浓度,可得到具有均匀分布的孔隙的PSL。 EIS 数据显示,涂覆的 Si 在 22 M HF/0.5 M HNO 3 中的溶解速度比未处理的 Si 快,从而形成均匀的规则圆形孔 PSL,SEM 显微照片证明了这一点。使用具有两个时间常数的可接受电路模型来拟合实验阻抗值。蚀刻剂 HF 或氧化剂 HNO 3 的浓度增加有助于 Si 的溶解和 PS 的快速发展。AFM 分析表明,随着蚀刻时间的增加,Si 表面的孔宽和粗糙度增加。使用 X 射线光谱衍射来确定不同蚀刻时间后 PSL 的结晶度。