摘要:纳米台阶作为经典的纳米几何参考材料,在半导体工业中用于校准测量,因此控制纳米台阶的高度是保证测量准确的关键。为此,本研究采用原子层沉积(ALD)结合湿法刻蚀制备了形貌良好的高度为1,2,3和4nm的纳米台阶。利用三维保形ALD工艺有效控制制备的纳米台阶的粗糙度。此外,使用基于仿真的分析研究了表面粗糙度与高度之间的关系。本质上,粗糙度控制是制备临界尺寸小于5nm的纳米台阶的关键。在本研究中,通过ALD和湿法刻蚀相结合成功实现的纳米台阶的最小高度为1nm。此外,基于1nm纳米台阶样品,分析了标准材料质量保证的前提条件和制备方法的影响因素。最后,利用制备的样品进行时间依赖性实验,验证了纳米台阶作为参考材料的最佳稳定性。这项研究对制备高度在5纳米以内的纳米几何参考材料具有指导意义,并且该方法可以方便地用于制备晶片尺寸台阶高度参考材料,从而实现其在集成电路生产线中大规模工业化在线校准应用。
在集成电路制造过程中,晶圆表面状态及洁净度是影响晶圆良率和器件质量与可靠性的最重要因素之一,化学机械抛光 ( CMP )、湿法清洗、刻蚀、电化学沉积(电镀)等表面技术扮演重要的作用。公司围绕液体与固体衬底表面的微观处理 技术和高端化学品配方核心技术,专注于芯片制造过程中工艺与材料的最佳解决方案,成功搭建了 “ 化学机械抛光液 - 全品类 产品矩阵 ” 、 “ 功能性湿电子化学品 - 领先技术节点多产品线布局 ” 、 “ 电镀液及其添加剂 - 强化及提升电镀高端产品系列战略供 应 ” 三大核心技术平台。
吴亚祥 1,2 ,余田 3 ,张淼 1,2 ,余大全 3 ,广川二郎 4 ,刘庆火 5 1 厦门大学深圳研究院,深圳 518057,中国,miao@xmu.edu.cn* 2 厦门大学电磁学与声学研究所,厦门 361005,中国,miao@xmu.edu.cn* 3 微电子与集成电路系,厦门,中国。 4 东京工业大学电气电子工程系,日本东京。 5 杜克大学电气与计算机工程系,美国达勒姆。 摘要 - 本文提出了一种采用玻璃微加工技术设计的 W 波段 16×16 单元共馈空气填充波导缝隙阵列天线。该天线由五层玻璃晶片层压而成。创新性地采用玻璃通孔(TGV)技术制作各层,该技术通过激光诱导深刻蚀工艺实现,并已初步应用于先进封装领域。根据湿法刻蚀工艺,在玻璃晶圆设计时考虑了10°的锥角。除了对天线进行电磁分析外,还对其力学和热学特性进行了仿真分析,以确保玻璃晶圆键合成功。实验结果表明,在中心频率94 GHz处天线增益为30.3 dBi,在W波段,当天线增益高于30 dBi时,带宽为13.3%。
使用 SF 6 和 CHF 3 气体的工艺 Muhammad Hidayat Mohd Noor 1 , Nafarizal Nayan 1,2 * 1 电气和电子工程学院 (FKEE), Universiti Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, MALAYSIA 2 微电子和纳米技术 - Shamsuddin 研究中心 (MiNT-SRC), Universiti Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, MALAYSIA *通讯作者指定 DOI:https://doi.org/10.30880/eeee.2022.03.02.010 2022 年 6 月 27 日收稿; 2022 年 7 月 24 日接受; 2022 年 10 月 31 日在线提供摘要:反应离子刻蚀 (RIE) 是一种用于微加工的刻蚀技术,也是干法刻蚀的方法之一,与湿法刻蚀相比具有不同的特性。RIE 中的反应等离子体的化学过程用于去除晶圆上沉积的材料。RIE 蚀刻机有几个可变因素,例如射频功率、压力、气体流速和蚀刻时间,这些因素对应于其蚀刻深度和蚀刻速率的输出参数。需要进行大量实验才能找到 RIE 的最佳设置,从而为输出蚀刻速率建立理想的条件。在本研究中,使用供给 RIE 系统的 SF 6 和 CHF 3 工艺气体对 Si 和 SiO 2 晶圆进行蚀刻。使用 Dektak XT Bruker 表面轮廓仪研究了蚀刻深度和蚀刻速率,并使用 3D 映射模式表征了蚀刻后的 Si 和 SiO 2 的表面粗糙度。结果显示了不同射频功率、时间和流速对蚀刻深度和速率的影响,从而可以选择最佳参数。关键词:反应离子蚀刻、RIE、等离子蚀刻、硅、二氧化硅
用电迁移应力法研究了具有自对准氧化铜钝化层的等离子刻蚀铜线的可靠性。通过等离子氧化制备氧化钝化层,覆盖整个裸露的铜线,防止环境条件下表面氧化。空洞的形成和生长过程反映了线路断线机理。用光学显微镜监测了由晶界耗尽和晶粒变薄形成的空洞,测量了线路故障时间与线宽和电流密度的关系。增加氧化钝化层会缩短寿命,因为传热和铜扩散不良会加速空洞的形成和生长。窄线比宽线具有更长的寿命,因为晶界较少,可供磁通发散形成空洞
摘要 :脑内神经递质多巴胺 (DA) 的含量异常与帕金森病、阿尔兹海 默症等神经系统类疾病的发生发展密切相关,精准、实时监测其脑 内含量可作为临床诊疗的重要参考。电化学分析法具备成本低、响 应快、可实现体内实时监测等优势。然而,脑内复杂环境中蛋白吸 附、多物质共存等因素会极大干扰多巴胺的定量分析,这对电极的 灵敏度、选择性和稳定性提出了极高的要求。因此,研发出满足要 求的电极材料是实现多巴胺电化学检测临床应用的关键。掺硼金刚 石 (BDD) 电极生物相容性好、背景电流低、电势窗口宽、抗吸附性 强、化学稳定性高,相较于易团聚、易脱落而失效的金属纳米颗粒 或电阻较大的高分子材料, BDD 电极更具潜力解决上述多巴胺检测 的难点问题。然而, BDD 电极虽能有效抵御蛋白吸附,但在多巴胺 的选择性检测方面存在不足: BDD 电极表面缺乏能够高灵敏度、高 选择性检测多巴胺分子的官能团。因此,在保持 BDD 本征特性的基 础上,系统研究 BDD 电极表面改性与功能化修饰对电化学检测多巴 胺的选择性、灵敏度和稳定性的影响机理,是 BDD 电极实现临床应 用的关键。基于此,本论文从 BDD 膜电极的功能性改性与修饰到 BDD 微电极体内检测,系统研究了 BDD 膜电极在多巴胺电化学检测 中的作用机理,揭示了 BDD 电极界面性质对多巴胺分子氧化过程的 影响规律,所得具体结论如下: (1) 针对 BDD 电化学活性较低的问题,采用高温溶碳刻蚀和滴 涂修饰方法,在 BDD 电极表面刻蚀纳米孔洞并修饰 Nafion 选择性透 过膜( NAF ),制备了 Nafion 修饰的多孔 BDD 复合电极 NAF/pBDD ; 研究了该复合电极对多巴胺的电化学检测机理,揭示了 NAF/pBDD 复合电极比 BDD 电极具有更多活性位点的原因,同时探究了 Nafion 膜对多巴胺和抗坏血酸的作用机制;该电极针对多巴胺的检测限 (42 nM) 和检测线性范围 (0.1 ~ 110 μM) 相较于 BDD 均得到了有效改善。 (2) 针对 BDD 电极对多巴胺选择性较弱的问题,在 pBDD 表面 修饰活性更高的纳米炭黑颗粒 (CB) ,制备了 NAF-CB/pBDD 复合电 极,研究了炭黑颗粒的加入对主要干扰物抗坏血酸 (AA) 电化学响应 的影响机理,揭示了该电极在高浓度、多干扰物并存环境下对多巴 胺的选择性检测机制。结果表明,该电极可有效将干扰物抗坏血酸 的氧化电位提前以减少对多巴胺信号的干扰,检测限 (54 nM) 和检测
摘要 关于碳纳米管-硅 MIS 异质结构的新研究表明,可利用器件绝缘层中厚度的不均匀性来增强其功能。在这项工作中,我们报告了一种器件的制造和特性,该器件由 n 型硅衬底上的单壁碳纳米管 (SWCNT) 薄膜组成,其中纳米管和硅之间的氮化物中间层已被刻蚀以获得不同的厚度。三种不同的氮化硅厚度允许在同一器件内部形成三个区域,每个区域都有不同的光电流和响应度行为。我们表明,通过选择特定的偏置,可以打开和关闭区域的光响应。这种特殊行为使该器件可用作具有电压相关活性表面的光电探测器。在不同偏置下对器件表面进行的扫描光响应成像突显了这种行为。
提出了一种基于氧化铟锡 (ITO) 超材料的可调谐太赫兹 (THz) 吸收体。通过飞秒激光直接刻蚀制作了具有不同臂长的上层 ITO 十字形超表面。中间介电层厚度仅为 60 μm,使吸收体具有很好的透明性和柔性。实验结果表明,THz 谐振峰在 1 THz 附近具有很高的性能。通过在中间层和 ITO 镜之间设置不同厚度的垫片,提出了一种新型的可调谐 THz 吸收体。其吸收峰频率可在 TE 和 TM 偏振之间从 0.92 到 1.04 THz 连续调节。这种透明 THz 超材料吸收体有望广泛应用于 THz 成像、传感和生物检测等。关键词:可调谐太赫兹吸收体;透明超材料;柔性超材料。 doi:10.3788/COL202018.092403。
将氧等离子体处理的石英晶片切割成1cm2用于PPMS(霍尔、磁阻、温变电导)和XPS测量中的所有电学测量。由于尺寸要求,将氧等离子体处理的ITO基板切割成0.5 cm * 0.5 cm用于PES和IPES测量,将氧等离子体处理的石英晶片切割成0.6 cm * 0.4 cm用于高场霍尔测量。所有基板在使用前分别在丙酮和异丙醇中通过超声波清洗工艺清洗10分钟。将C 14 -PBTTT溶液以3000 r/min的转速旋涂到相应的基板上,形成厚度约25nm的PBTTT薄膜,然后将获得的薄膜在150°C下退火10分钟,让其冷却至室温。将Cytop溶液旋涂到所有掺杂后的电学测量薄膜上进行封装,再通过光刻和氧离子刻蚀实现霍尔棒结构的图形化。掺杂工艺
迄今为止,锂离子电池仍然是最主要的和研究最广泛的可充电储能装置,但倍率性能和循环性能不足等缺点阻碍了它的进一步发展。上述缺点可以归因于电极材料的界面不稳定和电荷存储动力学缓慢。因此,赋予电极材料稳定的界面和快速的离子/电子扩散动力学是解决这些问题的有效方法。本文通过调节抗猎杀界面,通过自模板法和刻蚀工艺构建了一种具有快速动力学的高容量自适应FeP@C纳米笼。获得的FeP@C纳米笼表现出高容量(0.2 A g -1 时~900 mAh g -1)和优异的倍率性能(10 A g -1 时532 mAh g -1)。令人印象深刻的是,即使在 0.5 A g − 1 下长期循环 800 次后,仍能保持 680 mAh g − 1 的稳定容量。此外,通过定量分析和非原位同步加速器高能 X 射线衍射 (HEXRD) 证实了快速动力学和锂存储机制。