312.704.5300 www.jrcert.org 2025 年 1 月 21 日 Justin Hoggard,教育学博士 校长 海岸弯学院 3800 Charco Road Beeville, TX 78102 主题:项目编号 0559 之前的认证状态:试用期 最近一次现场访问:2021 年 10 月 亲爱的 Hoggard 博士: 在审查了要求的补充进度报告、实质性变更(即从学期改为季度学期)和正当理由延期请求(即由于关键人员变动和不符合学生成绩/成功目标而延长合规时间)后,2025 年 1 月 14 日的放射技术教育联合审查委员会 (JRCERT) 会议审议了海岸弯学院主办的副学士学位放射学课程的持续认证状态。 JRCERT 是唯一获得美国教育部 (USDE) 和高等教育认证委员会 (CHEA) 认可的机构,可认证传统和远程授课的放射学、放射治疗、磁共振和医学剂量学教育课程。JRCERT 授予的专业认证通过提供同行评估和向公众保证放射科学领域的优质专业教育,为机构提供了重要价值。该计划根据《放射学认证教育计划标准》(2021) 进行评估。JRCERT 采取了以下行动:
抽象体积调节的电弧治疗(VMAT)是一种相对较新的疗法技术,其中使用圆锥形束在患者周围旋转进行治疗。辐射以连续的龙门旋转传递,而锥束则通过动态多动物准直仪(MLC)的交织来调节。对VMAT计划的研究表明,治疗时间和监测单位(MU)的减少,可与IMRT计划相当,从而改善了患者的主要舒适度,并减少了与患者在治疗过程中有关的不确定性。使用VMAT处理的处理可以最大程度地减少辐射对靶标体积附近的关键结构的生物学作用,并产生出色的剂量分布。电离辐射的剂量学对于用于设备质量保证和许可的放射学保护计划至关重要。用于放射肿瘤学的质量保证计划实质上是为了维持患者护理的质量。由于VMAT是一种辐射疗法的新技术,因此重要的是优化质量保证机制,以确保进行测试以保留患者和设备。本文旨在确定目标体积中的剂量分布(要治疗的肿瘤)和VMAT技术的散射剂量分布比较了计划系统和热发光(TL)响应的数据。
放射性治疗是各种恶性肿瘤的新兴和有效的治疗选择,但可能与血液学副作用相关,例如贫血,淋巴细胞减少或血小板减少症。新型治疗剂的安全性和效果,焦油越来越复杂的靶标可以通过全面的剂量来很好地满足。但是,基于预测不良事件并基于可靠剂量反应关系的风险因素的患者管理和患者选择的优化仍然是开放的需求。在这种情况下,人工智能方法,尤其是机器学习和深度学习算法,可能起着至关重要的作用。本评论概述了即将到来的机会,可以通过提高骨髓和血液剂量学的精度,将人工智能方法整合到核医学中的核医学领域,从而使潜在的血液学风险因素早期鉴定,并允许对适应性治疗进行适应性治疗。它将进一步说明可能转化为核医学实践的邻近学科的鼓舞人心的成功案例,并将为未来的方向提供概念建议。将来,我们期望通过人工智力辅助(预测)剂量测定与临床参数相结合,可以为放射性疗法中真正具有人性化的治疗疗法铺平道路。Semin nucl Med 00:1-10©2024作者。由Elsevier Inc.出版这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)
背景和目的:已证明超高剂量率放疗(FLASH)可减轻与常规剂量速率放疗(CORS)相关的正常组织毒性,而不会在临时性模型中损害肿瘤。包括Flash在内的临床前辐射研究中的一个巨大挑战正在验证多个机构的物理剂量法和生物学效应。材料和方法:我们先前使用标准化的幻影和剂量计在单独的机构在单独的机构中证明了两种不同的电子闪存设备的剂量学重复性。在这项研究中,在这两个机构中给出了无肿瘤的成年雌性小鼠的整个脑闪光灯和CORN辐照,并评估了多个神经生物学终点的可重复性和时间演化。结果:在机构之间,在机构之间复制了新型对象识别(射线后4个月)和电生理长期增强(LTP,5个月)的行为表现的闪光释放。在海马神经发生(SOX2,Doublecortin),神经炎症(小胶质细胞激活)和电生理学(LTP)的闪光和CONS之间的差异未在早期(48 h至2周)观察到,但是不成熟的神经元的恢复较大。结论:总而言之,我们证明了具有经过验证的剂量法的两个不同机构的两个不同机构之间对大脑的可再现闪光释放影响。闪光节省效果对评估的端点的效果在稍后但最早的时间点表现出来。
摘要:准确的剂量学验证在放射疗法中变得越来越重要。al-尽管聚合物凝胶剂量测定法可能有助于验证复杂的3D剂量分布,但由于其对氧气和其他污染物的反应性强,因此对临床应用有局限性。因此,重要的是,凝胶储存容器的材料将与外部污染物的反应阻止反应。在这项研究中,我们测试了可以用作凝胶容器的各种基于聚合物的3D打印材料的化学渗透性。使用甲基丙烯酸,明胶和四甲基(羟甲基)氯化磷。比较了可应用于融合沉积建模(FDM)-Type 3D打印机的五种类型的印刷材料:丙烯酸酯丁烷丁二烯苯乙烯(ABS),cPE-POLYETER(CPE),聚碳酸酯(PC)(PC),多聚乳酸(PLA)和聚丙烯(PPPPPPPPPP)(PP)(PLA)(PLA)(pp)(plage vial)。分析了从磁共振成像扫描获得的每种材料的R2(1/T2)松弛率的地图。此外,评估了R2图的响应直方图和剂量校准曲线。R2分布表明,CPE比其他材料具有更高的边界,并且CPE的轮廓梯度也最接近参考小瓶。直方图和剂量校准表明,与参考小瓶相比,CPE提供了83.5%的最均匀和最高相对响应,均方根误差为8.6%。这些结果表明CPE是FDM型3D打印凝胶容器的合理材料。
在增强患者护理的目标的驱动下,治疗学领域正在迅速发展。最近的人工智能(AI)及其创新的治疗应用标志着核医学的重要一步,导致精确肿瘤学的范式发生了重大范式转移。例如,AI辅助肿瘤表征,包括自动图像解释,肿瘤分割,特征鉴定和高风险病变的预测,改善诊断过程,提供精确而详细的评估。通过针对个人独特的临床概况量身定制的全面评估,AI算法有望增强患者风险分类,从而使患者需求与最合适的治疗计划的一致性保持一致。通过发现对人眼的看不见的潜在因素,例如肿瘤放射敏感性或分子谱的内在变化,AI软件有可能革新响应异质性的预测。为了准确有效的剂量计算,AI技术通过提供定制的幻影和简化复杂的数学算法,使个性化的剂量学可行,可在繁忙的临床环境中访问,从而提供了重要的优势。AI工具有可能利用预测和减轻与治疗相关的不良事件,从而可以提早干预。此外,可以利用生成的AI找到用于开发新型放射性药物并促进药物发现的新目标。仍然有很多值得探索和理解的。然而,尽管对AI在治疗学中的作用具有巨大的潜力和显着的兴趣,但这些技术并不缺乏局限性和挑战。在这项研究中,我们研究了AI在治疗学中的当前应用,并试图拓宽未来研究和创新的视野。
摘要目的:大麻二酚(CBD)是一种对其所谓的治疗作用兴趣越来越多的植物大麻素,主要是通过摄入和吸入而消费的。虽然已经报道了口服CBD的毒理学,但对CBD吸入的影响知之甚少。选择用于目前分析的剂量允许以比典型的人类消费水平高> 100倍以评估剂量反应。材料和方法:在丙烯乙二醇(PG)中配制了CBD(98.89%纯),并通过雾化雾化,以评估仅鼻子吸入后的生物学反应。Sprague Dawley大鼠(n = 35名男性,30名女性)分别暴露于1.0和1.3 mg/l标称CBD和PG的标称浓度,持续12-180分钟。由此产生的平均每日剂量范围为8.9 - 138.5 mg/kg CBD和11.3 - 176.0 mg/kg Pg。达到了1.4 m m中位直径的气溶胶。生物反应指标包括临床体征,临床化学,血液学,身体/器官体重和肺/系统性组织病理学。结果:在最高剂量的CBD的鼻子中观察到炎症和坏死反应。在较高剂量下主要观察到喉和肺中的有限发现。在肺外器官中没有组织学发现。剂量学建模分别区分了鼻区域和肺之间的无观察不良影响水平分别为2.8和10.6 mg/kg CBD。结论:在高剂量下观察到呼吸道组织学变化的剂量剂量发现。在较低剂量的情况下与典型的非处方vape产品一致,在本研究中似乎具有很大的安全余量(鼻子和肺部分别为93倍和353倍)。
测量机械量 (U) Dir 和 Prof. Dr.-Ing。R. Schwartz 材料强度 (FH) 工程博士。D. Röske 信息与编码理论 (FH) 教授、博士F. Jäger 电气工程基础知识 (S) A. Eggestein 电气工程基础知识 (S) A. Eggestein 电气工程基础知识 (S) A. Eggestein 结构声 (FH) 教授、博士工程师。W. Scholl 波在 Kontinna (U) Dr. 中的传播M. Schmelzer 计量学基础 2 (U) PD 博士U. Siegner 高频和移动无线电测量技术 (U) Dr. T. Kleine-Ostmann 单电子隧道 (U) F. Maibaum 现代存储技术 (U) Dr. M. F. Beug 现代力、质量及其衍生量的测量 (MKM) (U) Prof. Dr.-Ing。K.-D。夏季测量数据评估和测量不确定度 (MDA) (U) 教授、博士、工程师。K.-D。夏季测量数据评估和测量不确定度 (MDA) (U) 教授、博士、工程师。K.-D。夏季测量数据评估和测量不确定度 (MDA) (U) 教授、博士、工程师。K.-D。分析化学 (MDC) 夏季测量数据评估和测量不确定度 (U) 教授、博士工程师。K.-D。夏季防火装置 - 研讨会“Tank Reversion AI - AIII + B”(S) Dr. D.-H- Frobese 防火装置 - 研讨会“Tank Reversion AI - AIII + B”(S) Dr. D.-H- Frobese VDI 知识论坛“处理易燃液体和气体时的防爆”(S) Dr. H. Bothe 工艺和工厂安全 (U) 总监和 U. Klausmeyer 教授“本质安全”保护类型 (FH) Dr.-Ing 的基础知识。U. Johannsmeyer Exi 现场总线模型 (FH) Dr.-Ing.U. Johannsmeyer 具有本质安全电路的系统 - 基础知识和构造要求 (A) Dr.-Ing.U. Johannsmeyer 电气驱动(机械工程系)(U) Dr.-Ing。C. Lehrmann Electrical Drives(机械工程系)() 工程博士。C. Lehrmann 防爆“电气系统”() Dr.-Ing。C. Lehrmann 防爆设备 () Dr.-Ing。M. Beyer 固态激光器 - 光谱基础知识和特性 (U) PD Dr. S. Kück 量子光学 (U) 教授、博士邮政信箱施密特相干光学 (U) 教授、博士邮政信箱施密特量子光学 (U) 教授、博士邮政信箱施密特量子逻辑和捕获离子精密光谱学 (S) 教授、博士邮政信箱Schmidt 材料技术的环境问题 I 和 II (U) 教授、博士、工程师。F. Löffler 技术交流 (FH) 教授、博士、工程师。Lederer 流体测量技术 (U) Dr.F. Löffler DoReMi 课程“跨学科辐射研究”:微剂量学 (S) Dr. H. Rabus Walther Bothe:巧合法 (U ) Dr. H. Rabus KIT 专家活动“微剂量和纳剂量测定的蒙特卡罗模拟”(U) Dr. H. Rabus DoReMi 课程“跨学科辐射研究”:纳米剂量学 (S) Dr. H. Nettelbeck 同步加速器辐射和 X 射线激光的定量实验 (U) 教授、博士M. Richter 同步加速器辐射和 X 射线激光的定量实验 (U) 教授、博士M. Richter 物理学分析方法精选 (U) Dr. B. Beckhoff 物理分析方法精选 (U) Dr. B. Beckhoff 温度过程技术基础 (S) Dr. J. Fischer 热电偶测温 (S) Dr. F. Edler 噪声测温 (S) Dr. F. Edler 电气工程课程 (FH) Dr. E. Lenz 不可逆热力学 (U) 教授、博士P. Strehlow 统计热力学 (U) 教授、博士P. Strehlow 流体测量技术 (U) Dr.Lederer 活性介质中的非线性波 (U) Dr. M. Bär 活性介质中的非线性波 (U) Dr. M. Bär 讲座“开源软件的科学工作”(U)Prof. Dr. H·科赫
需要在硼中子捕获(BNCT)中的治疗计划与其他放射性疗法和专用方法不同。患者内部的核相互作用必须对剂量计算进行建模。由于缺乏更精确的数据,患者组织是根据通常从ICRU报告中获取的平均元素组成来定义的[1,2]。10 B的浓度相对于基于已公布数据的血液硼浓度估计。通常只能精确地定义血液的浓度。In BNCT treatment planning, four dose components are calculated: 1) high-LET boron dose due to the alpha particle and 7 Li nucleus released in 10 B( n , ) capture reaction at thermal neutron energies, 2) intermediate-LET thermal neutron dose primarily due to the protons (E=0.54 MeV) released in nitrogen neutron capture reaction 14 N( n , p ) 14 C in tissue, 3)中间 - 让快速中子剂量主要是由于1 h(n,n')1 h反应中释放的后方质子和4)在氢中子中子捕获反应中从组织中1 h(n,)2 h(n,= 2.2 meV)中的低LET光子剂量在组织中,通常在中子束中存在低γ污染物。到目前为止,只有蒙特卡洛方法已成功地用作剂量计算工具。通常使用Funlence-to-Kerma转换因子来定义剂量(kerma近似)。另一种选择是计算每个中子和光子相互作用或分别通过每个二次粒子沉积的能量。BNCT不存在龙门群体系统。现有的BNCT中子源具有固定的光束,这意味着必须将患者旋转到最佳治疗方向。旨在定义与光子放射疗法临床效果相对应的单位的患者剂量,每个剂量成分乘以相对生物学有效性(RBE)因子(传统方法)或生物剂量功能,例如光子等效剂量剂量模型[3,4]或微氨基化剂量学模型[5]。治疗计划图像应在计划方向上最佳拍摄。在本文中,审查了当前用于满足BNCT剂量计算和治疗计划独特需求的方法。
对Dosisphere-01研究的临时分析表明,与局部晚期肝细胞癌的患者相比,使用90 Y负载的玻璃微球对使用具有个性化剂量测定的90 Y负载玻璃微球的总体生存率(OS)有了很大的改善(OS)。本报告试图对OS进行长期分析。方法:在本II阶段研究(ClinicalTrials.gov iDentifier NCT02582034)中,随机分配治疗(1:1),目的是至少提供205 gy(如果可能的话)。250 - 300)到个性化剂量法(PDA)中的索引病变,或120 6 20 Gy到标准剂量学方法(SDA)中处理的体积。索引病变的3-MO响应是主要端点,OS是次要端点之一。本报告是事后对OS的长期分析。结果:总体而言,至少1个大于7厘米的病变和30%以上的肝储备的肝细胞癌患者是随机的(意图到治疗的pda:pda,n 5 31; sda; sda,n 5 29),实际上有56个实际治疗(修改式拟合的治疗方法)长期分析的中位随访为65.8mo(范围2.1 - 73.1 mo)。中值OS分别为24.8mo和10.7mO(危险比[HR],0.51; 95%CI,0.29 - 0.9; P 5 0.02),在修改的意图治疗人群中,PDA和SDA分别为PDA和SDA。最后,未达到中位数的OS在第二切除的患者中(n 5 11,10在PDA组中,在SDA组中为1),而没有次级切除的患者为10.8 mo(n 5 45)(n 5 45)(HR,0.17; 95%CI,0.065 - 0.43 - 0.43; p 5 0.0002; p 5 0.0002)。结论:肿瘤剂量至少为205GY的患者的OS中位数为22.9mo,而肿瘤剂量小于205GY的患者为10.3mo(HR,0.42; 95%CI,0.22 - 0.81; P 5 0.0095),患有150次刺激的患者,150-MOSE的患者为22.9 mo,150-MONE,VER-150-ger-nimer,150 gy-1.3m,150-ger-nime,150-ger-nime ver-15m-1.3m。小于150 g(HR,0.42; 95%CI,0.23 - 0.75; P 5 0.0033)。仅切除的患者显示出有利的长期OS率,这意味着5 y时的OS超过50%。