摘要 该研究介绍了对孕妇进行放射治疗过程中涉及的物理和放射防护方面的问题,这些问题有助于胎儿的安全和发育。对已确诊妊娠并接受放射治疗的临床病例的研究进行了分析。该工作还通过文献中提出的实验测量和计算模拟,分析了考虑到胎儿区域的估计吸收剂量的不同治疗领域的具体剂量测定方案。讨论了 AAPM 报告 TG 36 中提出的胎儿辐射概念,重点关注使用适当的屏蔽和主要辐射场外的外周剂量分布的影响。研究并未就胎儿暴露的阈值剂量达成共识,其值在2至25 cGy之间变化,取决于妊娠期和腹部内的位置。巴西放射防护机构建议,怀孕期间受到职业照射的孕妇腹部所受辐射剂量当量不应超过2.0毫希沃特。测量结果表明,造成胎儿受照剂量增加的主要因素有:头部逸出的辐射、准直器的散射以及胎儿周围受照射区域组织的弥散。所分析的科学文章中所示的研究结果和实际临床情况表明,只要对胎儿的剂量低于指示的阈值,对孕妇进行放射治疗是可行的,这可以通过使用屏蔽和适当的辐射场配置来实现,并由专业物理学家在治疗前模拟治疗并进行正确的计划。这项工作旨在为怀孕患者放射治疗过程中的治疗决策提供支持,指出需要治疗时的风险和益处。
通用人工智能在放射肿瘤学领域一直保持着自己的脚步。放射治疗包括 5 个主要步骤(图 1),即 a)患者评估,包括放射决策和咨询,b)模拟,包括图像配准和重建和轮廓勾勒,c)治疗计划,包括剂量测定和计划审查,d)质量保证和治疗实施,包括图像审查、设置验证、每日成像,e)患者随访 [1]。放射治疗的快速发展产生了“大数据”概念,这意味着由于放射治疗过程的复杂性而积累了大量数据,包括:数据量(数据密集型成像系统)、速度(不断增长的档案)、准确性(对数据的主观解释)和多样性(成像模式的多样性)。需要信息技术的一个创新分支来分析和处理这些数据 [2]。在人工智能的一个分支机器学习中,开发了模仿人类智能的计算机算法。密集编程和软编码使这些算法通过重复变得越来越好 [3]。在患者评估中,CADe 是一种计算机辅助检测,它允许计算机在图像诊断和评估中给出第二意见 [3]。提出了几种基于 ML 的模型,如使用 ANN(人工神经网络)[4] 检测 CT 中的肺结节,以及使用 CNN(卷积神经网络)检测乳房 X 线摄影 [5]。通过深度学习检测脑病变方面取得了卓越的成果 [6]。这种 ML 可以显著提高临床医生和放射科医生对疾病的评估,并预测风险收益比
诊所。一般而言,放射学界对人工智能的影响有两种观点。第一种观点相当乐观,认为人工智能将有助于加强放射科医生在医疗保健大局中的作用 [ 2 ]。另一种观点认为,人工智能将接管放射科医生的任务,使其成为敌人而不是补充工具 [ 3 ]。最近的一项调查显示,放射医学界对此持温和乐观态度,62% 的人认为诊断放射科医生的工作不会因人工智能而受到威胁 [ 4 ],随着人工智能越来越多地被视为解决当前放射科医生短缺问题的潜在解决方案,以提高医疗实践质量,以及降低整体医疗成本的一种手段 [ 5 ],放射医学界对此的接受度正在提高。在核医学领域,我们才刚刚开始触及这些问题的表面 [ 6 ],或许我们认为这些问题会在适当的时候得到解决,而无需我们的直接干预。人工智能在核医学和放射学(以及其他学科)中的应用具有相似之处,特别是混合成像中使用的横断面技术。尽管人工智能在核医学中的引入已经落后,但没有理由认为其他学科遇到的优势、进展、解决方案和挑战不会适用于核医学。此外,这些发展不仅限于核医学医生。它们还将扩展到物理学家、放射化学家和放射药剂师。核医学的一些特定方面,即短寿命同位素对放射性药物制备和患者安排的影响,或个体剂量测定在治疗中的应用增加,可能会进一步增强人工智能对我们日常实践的潜在影响。
应用于医疗测量技术(例如剂量测定和近距离放射治疗)、环境测量技术(例如粉尘浓度或排放控制测量),还应用于现代半导体工业(微电子和纳米电子学)或现代照明工业。所提出的方法基于一种新型、方便的仪器,即超稳定、低噪声电流放大器(英语超稳定低噪声电流放大器,简称ULCA),用作电流-电压转换器,具有出色的性能,无需直接使用低温方法[3, 4]。其高度稳定的传输系数基于量子霍尔效应进行“量子精度”校准,电压信号采用基于约瑟夫森电压标准的电压表测量。原则上,计划在不久的将来对 SI 进行修订,定义基本电荷 e 的精确值,这使得根据关系 I = e ∙ 表示追溯到频率 f 的电流强度成为可能f[1]。然而,由于制造技术和操作的复杂性非常高,目前正在开发的必要的单电子泵尚未完全开发用于实际计量用途[5-8]。迄今为止,计量机构已经进行了亚纳安电流的再循环生成,优选使用基于使用电压斜坡的电容器充电的过程[9-11]。相对不确定性最多达到 10 µA/A 左右 [12],其中精度受到电容器容量频率依赖性的不确定性贡献的限制 [13]。ULCA 概念避免了这一基本限制。除了其他实质性的实际优势外,ULCA 还能够生成和测量小电流强度,其不确定性比传统方法小大约两个数量级。ULCA的概念、特点、可能的应用以及初步应用的结果如下
ACGIH American Conference of Governmental Industrial Hygienists AIC Akaike's information criterion ALD approximate lethal dosage ALT alanine aminotransferase AST aspartate aminotransferase atm atmosphere ATSDR Agency for Toxic Substances and Disease Registry BMD benchmark dose BMDL benchmark dose lower confidence limit BMDU benchmark dose upper confidence limit BML benchmark concentration lower confidence limit BMCU benchmark concentration upper confidence limit BMDS Benchmark Dose Software BMR benchmark response BUN blood urea nitrogen BW body weight CA chromosomal aberration CASRN Chemical Abstracts Service Registry Number CBI covalent binding index CHO Chinese hamster ovary (cell line) CL confidence limit CNS central nervous system CPN chronic progressive nephropathy CYP450 cytochrome P450 DAF循环系统的DAF剂量测定调节因子DCS疾病DEN二乙基硝基胺DMSO DMSO二甲基硫氧化二甲基二甲基二甲基甲酸DNA DNA脱氧核心酸EPA环境保护剂环境保护局FDA食品和药物管理FEV 1二秒ggd gd gd gd gd gd gd gd gd gd gdm glitem glutem ste转移酶GSH谷胱甘肽GST GST谷胱甘肽-S-转移酶HAWC健康评估工作空间协作HB/G-A动物血液:气体分区系数HB/G-H人体血液人体血液:气体分配系数HEC人类等效浓度HED人类等效剂量剂量剂量英雄健康和环境研究在线在线
80% 的结肠直肠癌 (CRC) 过度表达表皮生长因子受体 (EGFR)。40% 的 CRC 中存在 Kirsten 大鼠肉瘤病毒致癌基因 (KRAS) 突变,并导致对抗 EGFR 药物产生新的耐药性。7% - 10% 的 CRC 中存在 BRAF 致癌基因突变,预后更差。我们在体外和体内评估了 [ 225 Ac]Ac-macropa-nimotuzumab 在 KRAS 突变体和 KRAS 野生型和 BRAF V600E 突变 EGFR 阳性 CRC 细胞中的有效性。开发了抗 CD20 [ 225 Ac]Ac-macropa-rituximab 并将其用作非特异性放射免疫缀合物。方法:抗 EGFR 抗体尼妥珠单抗通过 18 元大环螯合剂 p-SCN-macropa 用 225 Ac 进行放射性标记。使用流式细胞术、放射性配体结合试验和高效液相色谱法对免疫偶联物进行表征,并使用活细胞成像研究内化。在二维单层 EGFR 阳性 KRAS 突变体 DLD-1、SW620 和 SNU-C2B;KRAS 野生型和 BRAF V600E 突变体 HT-29 CRC 细胞系;以及三维球体中评估体外细胞毒性。在健康小鼠中研究了剂量测定。在接受 3 剂 13 kBq/剂治疗(间隔 10 天)后,对携带 DLD-1、SW620 和 HT-29 异种移植瘤的小鼠评估了 [ 225 Ac]Ac-macropa-nimotuzumab 的体内疗效。结果:在所有细胞系中,体外研究表明 [ 225 Ac]Ac-macropa-nimotuzumab 的细胞毒性比 nimotuzumab 和对照更强。DLD-1 细胞系中 [ 225 Ac]Ac-macropa-nimotuzumab 的 50% 抑制浓度为 1.8nM,而 nimotuzumab 的 50% 抑制浓度为 84.1nM。类似地,在 KRAS 突变型 SNU-C2B 和 SW620 以及 KRAS 野生型和 BRAF V600E 中,[ 225 Ac]Ac-macropa-nimotuzumab 的 50% 抑制浓度比 nimotuzumab 低 79 倍
NAVMED P-5055 CH-2 至 2011 年 2 月版本第 2 章 3。特殊研究。所需的特殊研究记录为:a。体检前 3 个月内进行白细胞计数 (WBC) 和血细胞比容 (HCT)。b. 尿液分析。体检前 3 个月内使用显微镜高倍视野对尿液进行红细胞检测。c. 40 岁及以上的女性需要进行乳房检查(手动和临床乳房检查)。平民女性工人可以由其平民提供者进行此项检查,并将文件提交给海军检查员。平民女性工人还可以提交乳房 X 线摄影检查的结果以供考虑。无需进行女性盆腔检查。d. 不再需要进行直肠指检 (DRE)。在第 18 栏中标记“未检查 (NE)”。 e. 此外,以下特殊研究可能适用: (1) 必须按照本手册第 3 章进行放射性物质的职业摄入和待计量有效剂量当量或待计量剂量当量的评估。(2) 当主管医生、放射卫生官员或放射卫生主管认为必要时,可以对身体组织、分泌物和排泄物进行放射性生物测定,以估计内部污染物的暴露量。如果指挥部缺乏执行适当放射性生物测定或执行承诺有效剂量当量或承诺剂量当量计算的能力,则必须向第 3 章中指定的支持设施之一提交援助请求。(3) 经 BUMED 负责人批准,可在适用的放射控制手册中提供因特定工作环境而需要进行特殊检查的额外要求。f. 第 2-2 条第 2 款列出的放射工作人员医疗资格更新周期不得延长以适应外部体检或特殊研究结果。未在第 2-2 条第 5b 款规定的范围内完成外部私人测试的工作人员将被暂时指定为不合格体检人员 (NPQ),其剂量计发放特权将被暂停,并在适用的情况下,被列入指挥部剂量测定不允许发放 (DINA)(取消资格)名单。当 RME 完成且工人身体合格时,必须恢复工人的剂量计发放特权。2022 年 12 月 2 日 2-5 CH-2
靶向放射性核素治疗 (TRT) 也称为分子放射治疗、靶向放射治疗或放射治疗诊断学,是一个快速发展的领域,最近取得了重大突破 ( 1 - 3 )。它旨在治疗播散性癌症,这是肿瘤学的主要临床挑战 ( 4 , 5 )。TRT 基于个性化患者选择,使用分子成像来验证癌细胞表面或转移瘤的血管和/或基质元素中是否存在生物靶标。唯一获批的 α 发射放射性药物是 Xofigo( 223 RaCl 2 ,于 2013 年获批)。最近,β 辐射 177 Lu-PSMA- 617(Pluctivo,2022 年获批)获批用于治疗表达前列腺特异性膜抗原 (PSMA) 的转移性去势抵抗性前列腺癌 (mCRPC),177 Lu- DOTATATE(Lutathera,2018 年获 EMA 批准)获批用于治疗生长抑素受体阳性神经内分泌肿瘤 (NET),这显然将 TRT 转变为癌症治疗的主流。尽管如此,一些患者要么对 177 Lu 疗法没有反应,要么在最初反应良好后,对基于 177 Lu 的疗法产生了耐药性,尽管癌细胞表面靶蛋白表达充足(6、7)。许多临床前和临床试验表明,由于发射α粒子的放射性药物具有物理特性、高线性能量转移以及相对于β粒子发射而言在组织中的射程短,因此正在成为一种有前途的癌症治疗方法(8-11);它们还可以直接杀死缺氧或放射和化学抗性的癌细胞。本研究主题的目的是描述针对不同癌症的新型发射α粒子放射性药物的开发,单独或联合使用的靶向α粒子治疗(TAT)的近期临床前、已完成和正在进行的临床试验,剂量测定、安全性、与合适的发射α粒子放射性核素的供应和可用性相关的挑战,以及一些未来前景。本研究主题包括 16 篇文章,重点关注原创研究(四篇文章)、对 TAT 不同方面的评论(9 篇文章)、正在进行的临床试验(一篇文章)、研究方案(一篇文章)以及假设和理论(一篇文章)。来自澳大利亚、比利时、法国、德国、波兰、挪威、新加坡、瑞典、瑞士、英国和美国的关键意见领袖、医生和科学家为该研究课题做出了贡献。
尽管几十年来人们已经知道癌症对铁有着无尽的渴望,但直到最近才出现了一种化学方法,利用这种改变的状态进行治疗,即针对癌细胞中扩大的细胞浆不稳定铁池 (LIP)。最先进的治疗方法包括与 LIP 反应产生细胞毒性自由基物质(在某些情况下还会释放药物有效载荷)和加剧 LIP 诱导的氧化应激以引发铁死亡的分子。在患者中有效地实施 LIP 靶向疗法需要生物标记来识别那些 LIP 升高最高、因此最有可能死于 LIP 靶向干预的肿瘤。为了实现这一目标,我们测试了肿瘤对新型 LIP 感应放射性示踪剂 18 F-TRX 的摄取是否与肿瘤对 LIP 靶向疗法的敏感性一致。方法:在 10 个皮下和原位人类异种移植模型中体内评估了 18 F-TRX 的摄取。优先考虑神经胶质瘤和肾细胞癌,因为这些肿瘤在 Broad Institute 癌细胞系百科全书中具有最高的 STEAP3(一种将三价铁还原为亚铁氧化状态的氧化还原酶)相对表达水平。在携带 U251 或 PC3 异种移植瘤的小鼠中比较了 LIP 激活的前药 TRX-CBI(可释放 DNA 烷化剂 CBI)的抗肿瘤作用,这两种肿瘤分别具有高和中等水平的 18 F-TRX 摄取。结果:18 F-TRX 显示出广泛的肿瘤蓄积范围。抗肿瘤评估研究表明,TRX-CBI 强烈抑制了 U251 异种移植瘤(具有最高 18 F-TRX 摄取量的模型)的生长。此外,抗 U251 肿瘤作用显著高于 PC3 肿瘤作用,这与治疗前肿瘤中 18 F-TRX 确定的 LIP 相对水平一致。最后,剂量测定研究表明,成年雄性和雌性小鼠的估计有效人体剂量与其他 18 F 基成像探针相当。结论:据我们所知,我们报告了第一个证据,即可以使用分子成像工具预测肿瘤对 LIP 靶向治疗的敏感性。更一般地说,这些数据为核治疗诊断模型带来了新的维度,表明需要成像来原位量化亚稳态生物分析物的浓度以预测肿瘤药物敏感性。
SSC(SSC-21)的第21届会议于2024年3月11日至15日在维也纳举行。开幕式是由人类健康部主任梅·阿卜杜勒·瓦哈卜(May Abdelwahab)和莫罗·卡拉拉(Mauro Carrara)和iaea/ssdl共同秘书的负责人毛罗·卡拉拉(Mauro Carrara)先生与Adrianavélazquezquezquezquezquezquezquezquezquequezquezquequeberumen bera norkation wardy word worldy working wordy working wor Whore devernation working wor Wersectic,who ssdl的共同秘书,who ssdl ssdl的秘密秘书但是能够在会议的第一天和最后一天通过基于Web的视频传输加入会议。SSC-21的成员是:墨西哥国立大学(UNAM)的玛丽亚·布兰丹,代表国际放射线和测量委员会(ICRU)和放射医学物理学专家; David T Burns,代表辐射剂量测定和辐射标准的国际局(BIPM)专家(BIPM)专家;英国伦敦大学学院医院的约翰·迪克森(John Dickson),核医学成像物理学专家; Stephen F. Kry,医学博士Anderson,美国,专门进行剂量审核(在美国MD Anderson Cancer Center的Andrea Molineu在美国的Andrea Molineu取代,剂量计审核专家); Jan Seuntjens,玛格丽特癌症中心和加拿大多伦多大学,参考剂量学和放射疗法的专家,张大,尼姆,中国,初级辐射剂量学标准专家,Mehenna Arib,SSDL,SSDL,SSDL,SSDL,SSDL,SSDL,FAISAL KING FAISAL专业医院和研究中心,Saudi Arabia tore the Dosimimetimetry whertry whertry whertry whertry whertry whertry whertry whertry whertry whertry whertry whertiry亲自使用基于Web的音频和电子传输参与。Anderson,美国,专门进行剂量审核(在美国MD Anderson Cancer Center的Andrea Molineu在美国的Andrea Molineu取代,剂量计审核专家); Jan Seuntjens,玛格丽特癌症中心和加拿大多伦多大学,参考剂量学和放射疗法的专家,张大,尼姆,中国,初级辐射剂量学标准专家,Mehenna Arib,SSDL,SSDL,SSDL,SSDL,SSDL,SSDL,FAISAL KING FAISAL专业医院和研究中心,Saudi Arabia tore the Dosimimetimetry whertry whertry whertry whertry whertry whertry whertry whertry whertry whertry whertry whertiry亲自使用基于Web的音频和电子传输参与。