Flash放射疗法(Flash-RT)是通过超高剂量剂量的剂量来进行放射疗法的新方法。Flash-RT具有抑制肿瘤生长的能力,同时保留正常组织(称为闪光效应)。尽管通过不同的电离辐射在各种模型中证明了闪存效应有效,但仍然尚不清楚确切的潜在机制。本文总结了物理化学和生物学水平上闪光作用的主流假设,包括氧耗竭和自由基反应,核和线粒体损害以及免疫反应。这些假设为闪光效应做出了合理的解释,并根据生物体对电离辐射的响应的时间顺序互连。通过整理现有的共识,证据和假设,本文概述了闪存效应的潜在机制和闪存RT领域未来研究的实用指导的潜在机制。关键词:超高剂量率照射,闪光效应,放射疗法,机制
颅脑损伤的立体定向放射治疗管理(由 1 个疗程组成的完整治疗过程) 77465 每日千伏治疗管理 77499 未列出的程序,治疗放射学治疗管理 77520 质子治疗输送;简单,无补偿 77522 质子治疗输送;简单,有补偿 77523 质子治疗输送;中级 77525 质子治疗输送;复杂 77600 高温,外部产生;表层(即加热深度为 4 CM 或更少) 77605 外部产生的高温;深层(即加热深度大于 4 CM) 77610 通过间质探头产生的高温;5 个或更少的间质施源器 77615 通过间质探头产生的高温;超过 5 个间质施源器 77620 通过腔内探头产生的高温 77785 远程后装高剂量率放射性核素近距离放射治疗; 1 通道 77761 腔内辐射源应用;简单 77762 腔内辐射源应用;中级 77763 腔内辐射源应用;复杂
目的:使用小体积电离室进行扁平过滤器(FF)和扁平过滤滤器(FFF)varian Truebeam stx线性加速器的扁平过滤器(FFF)横梁,研究小型和大型电离室的离子重组(K S)和极性校正因子(KPOL)。材料和方法:所有读数均以100厘米源到DMAX的表面距离(SSD)和10厘米深度的PTWBeamScan®水幻影进行测量,为6、10、10、15、6FFF和10FFF MEGA电压光光束,平方场的最大剂量速率为0.5×0.5cm2至30×30 cm2。分别雇用了两个离子腔室,例如PTW Semiflex 3d 31121和农民室30013,分别为0.07cc和0.6cc。根据国际原子能局技术报告系列(IAEA TRS 398)的第398号协议,从读数中计算了校正因子。用“两压方法”(TVM)获得的离子重组值用1/v对1/Q曲线(Jaffé-plot)验证了所有束能。结果:从结果来看,离子重组校正因子(K S)从未超过1.032,此外,Jaffé-Plot的结果与TVM值非常吻合(高达0.3%),除了方形0.5×0.5×0.5cm 2和1×1cm 2(最高8%)。KS值完全独立于所有光束能的场大小。KPOL值随场大小而独立于2×2cm 2的平方场差异,在2×2cm 2至10×10cm 2之间的平方场2×2cm 2中,绘图几乎显示了所有辐射条件的直线。对于所有平方场(0.5×0.5cm 2和1×1cm 2除外),FFF梁的K S和KPOL值分别差异为最大0.6%和0.1%。结论:小场剂量计的饱和电压大于剂量计的工作电压。小场的KS和KPOL值与标准字段(参考字段)不同。使用标准“两压方法”确定的KS可以充分考虑高剂量率FFF梁的高剂量率FFF梁。从FFF梁获得的结果不会显着偏离扁平的梁。平方场的不适当读数0.5×0.5cm 2和1.0×1.0cm 2可能是由于缺乏剂量计响应,这是由于缺乏侧向带电粒子平衡和腔室平均效果的结果。
- 可以更快、更便宜地购买 COTS 组件 - 辐射结果的可靠性更高 - 可以使用 COTS 组件为更快、更经济高效地开发太空任务做出贡献(ESA - 发展目标:到 2023 年与 2018 年相比增长 30%) - 支持通过 COTS 组件集成新技术 - 提供最先进的测试设施和测量工具。辐照设施包括三台钴-60 伽马辐照设施(点几何;剂量率:10 µGy/s 至 2 Gy/s)、两台中子发生器(能量:2.5 和 14 MeV;中子通量:在 4π 中高达 3·1010 n/s)、一台 450 keV X 射线设施、一台用于 SEE 研究的激光器(波长:1064 nm,脉冲长度:9ps,能量:高达 200 µJ/脉冲)、一条专用质子辐照光束线(能量:39 MeV 至 2 GeV)以及钴-60 高剂量辐照(MGy)的可能性。
本报告介绍了北欧五国(丹麦、芬兰、冰岛、挪威和瑞典)和波罗的海六国(爱沙尼亚、德国、拉脱维亚、立陶宛、波兰和俄罗斯联邦)的放射性应急监测国家系统。简要介绍了策略和设备方面的异同。预警的主要特点是全国自动伽马监测站网络。该网络由手动站和/或调查队补充,他们通常在预定位置进行测量。空气过滤站用于颗粒和气体的核素分析。地面沉积核素(例如铯-137)的剂量率图和沉降物图是根据来自空中测量、监测站、调查队和环境样本的数据制作的。大多数国家都描述了检查食品污染的计划。全身计数和器官测量用于确定内部污染。在检查站或根据需要,使用测量仪和其他设备检查人员、车辆、货物等的外部污染。各种现场测量完善了国家系统。讨论了未来可能的发展和计划的改进。本报告是对之前一份涵盖北欧国家的 NKS 报告的扩展和更新。
摘要 — 氧化镓 (Ga 2 O 3 ) 是一种新兴的超宽带隙半导体,在辐射探测中的应用引起了广泛关注。在本文中,我们利用金属有机化学气相沉积 (MOCVD) 在蓝宝石上生长的高电阻率非故意掺杂 (UID) ε-Ga 2 O 3 薄膜制造了超快 X 射线探测器。该探测器采用横向金属半导体金属 (MSM) 结构,在 100 V 时表现出 < 2 nA 的低暗电流,在 40 V 和 X 射线剂量率为 0.383 Gy/s 时其灵敏度高达 28.6 nC/Gy 或 ∼ 1 . 0 × 10 6 nC/(Gy · cm 3 )。在切换 X 射线照明下观察到探测器稳定且可重复的瞬态响应。此外,该探测器实现了全宽50 ns的脉冲X射线探测,其时间分辨率约为7.1 ns。这些结果表明,MOCVD生长的高电阻率UID ε-Ga 2 O 3薄膜在超快X射线探测方面具有巨大的潜力。
激光驱动的离子光束因其在多学科研究和技术中的潜在使用而引起了极大的关注。临床前研究对它们的放射生物学有效性,已经确定了使用激光驱动的离子束进行放射疗法的前景。特别是,通过高离子束电荷和激光驱动的离子束的唯一短束长度来实现对超高瞬时剂量率的有益作用的研究。此类研究需要可靠的在线剂量测定方法,以监视每次激光射击的束电荷,以确保将规定的剂量准确地应用于生物样品中。在本文中,我们介绍了对激光驱动离子加速器的集成电流变压器(ICT)的首次成功使用。这是一种无创诊断,用于测量加速离子束的电荷。它可以在线估计放射生物学实验中施加的剂量,并促进离子束调谐,特别是对激光离子源的优化以及质子传输光束线的对齐。我们介绍了ICT实施和与其他诊断的相关性,例如放射性膜,汤姆森抛物线光谱仪和闪烁体。
辐射屏蔽的目的是将辐射治疗设备产生的有效辐射剂量降低到房间外的足够低水平。所需的有效剂量水平由地方或国家监管机构确定。所需的剂量水平通常在公共占用率(不受控制的访问)与职业占用(受控访问)方面有所不同。到达受保护位置的剂量率直接受到工作量(W)的影响,这是机器产生的辐射的度量。对于线性加速器,同中心的工作负载是在同中心处吸收的剂量率,在最大程度的吸收剂量的深度确定水中,每小时以灰色(例如,每小时,每周或一年或一年)为灰色(gy)(NCRP 2005b)。然后将同中心的工作负载归一化为距X射线目标1米(如果从X射线目标到同中心的距离不是1米),以产生屏蔽计算中使用的工作负载(W)。除了工作负载外,所需的屏蔽也是机器能量(MVS)的函数;从X射线目标(或同中心)到屏蔽点的距离;梁沿特定方向定向的时间的比例;以及所考虑的空间被认为是占用的时间的一部分。
电子产品中的辐射损伤减轻仍然是一个挑战,因为唯一成熟的技术——热退火,并不能保证获得良好的结果。在本研究中,我们介绍了一种非热退火技术,其中使用来自非常短持续时间和高电流密度脉冲的电子动量来瞄准和调动缺陷。该技术在 60 Co 伽马辐照(5 × 10 6 拉德剂量和 180 × 10 3 拉德 h − 1 剂量率)GaN 高电子迁移率晶体管上进行了演示。在 30 °C 或更低温度下,饱和电流和最大跨导完全恢复,阈值电压部分恢复。相比之下,300 °C 下的热退火大多使辐照后特性恶化。拉曼光谱显示缺陷增加,从而降低了二维电子气 (2DEG) 浓度并增加了载流子散射。由于电子动量力不适用于聚合物表面钝化,因此所提出的技术无法恢复栅极漏电流,但性能优于热退火。这项研究的结果可能有助于减轻电子器件中某些形式的辐射损伤,而这些损伤很难通过热退火实现。© 2022 电化学学会(“ ECS ” )。由 IOP Publishing Limited 代表 ECS 出版。[DOI:10.1149/2162-8777/ ac7f5a ]
脑转移瘤 (BM) 经常发生在肺癌、乳腺癌和黑色素瘤等原发性肿瘤中,并且与明显较短的自然生存期相关。除了外科手术、化疗、靶向治疗和免疫治疗外,放射治疗 (RT) 也是 BM 的重要治疗方法,包括全脑放射治疗 (WBRT) 和立体定向放射外科 (SRS)。通过临床前模型验证治疗方案的有效性和安全性对于成功转化为临床应用至关重要。这不仅推动了基础研究,而且为临床研究奠定了理论基础。本综述以脑转移瘤 (AM-BM) 动物模型为基础,探讨了放射治疗与化疗、靶向治疗、免疫治疗以及纳米材料和含氧微泡等新兴技术相结合的理论基础和实际应用。首先,我们简要概述了 AM-BM 的建立。随后,我们总结了关键 RT 参数(RT 模式、剂量、分数、剂量率)及其在 AM-BM 中的相应影响。最后,我们对基于 RT 的联合治疗的当前研究现状和未来方向进行了全面分析。总之,目前尚无涉及 RT 的 AM-BM 治疗的标准化方案。进一步的研究对于加深我们对各种参数及其各自影响之间关系的理解至关重要。