• 热释光剂量计 27 • TLD 和袖珍剂量计的放置 28 • 总有效剂量当量 (TEDE) 29 • EW 和 PEM 的辐射剂量限值 30 • EW 和 PEM 的提醒 31 • 应急工作人员设备 32 • 辐射暴露记录/设备分发。日志放大 33 • 剂量计充电指南 34 • CDV-750 剂量计充电器 35 • EW 结束(使用网站/QR 码反馈) 36-37 • 即时视频 37 • 词汇表 38-39 • FEMA 和 NRC 首字母缩略词 40-45 • 辐射暴露记录 46 • 辐射设备分布日志 47 • 穿戴和脱下程序 48-49 • 即时培训:直接读取剂量计 50-51 • Browns Ferry 核电站 10 英里 EPZ 地图 52 • Browns Ferry 核电站 50 英里 IPZ 地图 53 • Farley 核电站 10 英里 EPZ 地图 54 • Farley 核电站 50 英里 IPZ 地图 55 • EW/PEM 安全简报示例 56
设计并制造了实时低能石墨量热仪原型,用于测定电子能量通量(单位面积电子能量)以及薄膜剂量计的同步辐射。这项工作由马来西亚核技术研究所 (MINT) 和玛丽女王学院和韦斯特菲尔德学院辐射物理组与国家物理实验室合作发起。标准包包含石墨芯、热敏电阻和数据记录器,在 MINT 电子束设施中进行了测试。它们使用 500 keV 的扫描光束和 200 keV 的自屏蔽电子辐照器。该系统被证明是一种有用的参考剂量计,特别是对于自屏蔽设施,在机器输出的校准和常规薄膜剂量计的标准化方面。
• 世界上最小的剂量计 • 可测量辐射范围大 • 超低功耗 • 双传感器,高精度和高可靠性 • 自动测量 • 自检 • 可配置警报 • 数字通信 • 自动保存功能(结果保留选项) • 内部温度传感器 • 宽工作温度范围 1* • 低频时钟振荡器选项 2* • IP67 防护等级,防尘,低 EMI 3* • 高抗冲击和抗振动性 4* • 单电源电压 • 可用于空间应用 • 经过太空飞行验证的解决方案,TRL-9 RadNano™ 是一种微型电子剂量计,针对小尺寸和低功耗进行了优化。这些仪器使用基于半导体的技术来感应和测量到达电子设备的电离辐射,包括伽马、X 射线、HZE 和高能质子辐射 5*。它们完全不含任何危险材料,并且设计为易于模块化地安装到任何电子系统中。这种剂量计可用于多种用途,只要辐射剂量测定很重要应用可能包括太空任务、科学实验、核研究、工业应用、医疗设备等等……
基于光学材料的剂量法已广泛使用。从灵敏度的角度来看,使用储存磷剂是有利的。(1)热发光(TL)(2,3)和光刺激的发光(OSL)(4-7)已用于个人剂量计和辐射成像。此外,定义为通过电离辐射产生的辐射中心的光致发光的放射性光致发光(RPL)已用于个人剂量测定和荧光轨道检测。(8,9)以实现进一步的灵敏度(10-16)或将适用性扩展到热中子,(17-24)已经进行了大量研究和发表。通常,可用于剂量测定法的储存磷酸盐由无机晶体或包含相对较高原子数元件的玻璃组成。在医学剂量法中,对于癌症的放射疗法,剂量计需要组织等效性。组织等效性是电离辐射能量与生物组织的吸收特征的等效性。为了达到组织等效性,可以使用有限数量的元素(通常原子数为3-9)。这在基于无机化合物的材料设计中施加了严重的限制。实现组织等效的有效方法是使用有机材料或软物质。到目前为止,已经开发了基于凝胶(25)或聚合物(26-31)的放射性剂量计。另外,有机
摘要:现场剂量测定(主动、被动剂量计)通过直接在现场确定环境剂量率来提供高精度。被动剂量计,例如 α-Al 2 O 3 :C,对于需要最小干扰的场地(例如考古遗址)特别有用。在这里,我们提出了一种使用 α-Al 2 O 3 :C 芯片获取环境宇宙剂量率和 γ 剂量率的综合方法。我们的程序包括(1)自制现场容器、(2)自制漂白箱、(3)快速测量序列和(4)基于 R 的软件来处理测量结果。我们的验证步骤包括可重复性、辐照时间校正、串扰评估和源校准。我们进一步模拟了容器对无限基质剂量率的影响,导致衰减约6%。我们的测量设计使用配备绿色 LED 的 lexsyg SMART 发光读取器。辐照是在封闭的 β 源下进行的。可以确定的最小剂量估计为约10 µGy。但是,我们还表明,对于所使用的设备,需要约2.6 秒的辐照时间校正,并且应考虑辐照串扰。建议的程序与克莱蒙费朗的四个参考地点进行了交叉检查,结果显示四个地点中有三个具有良好的 γ 剂量率。最后,介绍了一个应用示例,包括所需的分析步骤,用于埋藏在 Sierra de Atapuerca(西班牙)考古遗址的剂量计。关键词:α-Al 2 O 3 :C、剂量测定、发光、R. 1.介绍
摘要 — 我们通过蒙特卡罗模拟、特性良好的静态随机存取存储器 (SRAM) 和射电光致发光 (RPL) 剂量计研究了 CERN 中子飞行时间 (n_TOF) 设施 NEAR 站的中子场,目的是为电子辐照提供中子。模拟了 NEAR 几个测试位置的电子测试相关粒子通量和典型量,并将其与 CERN 高能加速器混合场设施 (CHARM) 的粒子通量和典型量进行比较,突出了相似点和不同点。在参考位置测试了基于单粒子翻转 (SEU) 和单粒子闩锁 (SEL) 计数的 SRAM 探测器(每个探测器具有不同的能量响应)和 RPL 剂量计,并将结果与 FLUKA 模拟进行了对比。最后,将 NEAR 的中子谱与最著名的散裂源和典型的感兴趣环境(用于加速器和大气应用)的中子谱进行比较,显示了该设施用于电子辐照的潜力。
波涛汹涌的水域试验. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Carderock 支持软件安装. . . . . . . . . . . . . . . . 16 霉菌和霉变. . . . . . . . . . . . . . . . . . . . 18 油水分离器系统. . . . . . . . . . . . . . . . . . . . 21 STAVE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 直流配电系统. . . . . . . . . . . . . . . . . . . . . . . 25 UAS 实验室进行飞行测试. . . . . . . . . . . . . . . . . . . . . 26 “小东西” 3D 打印. . . . . . . . . . . . . . . . . . . . 28 电池燃烧演示. . . . . . . . . . . . . . . . . . . . 30 NICE ANTX. . . . . . . . . . . . . . . . . . . . . ... 42 放射临界剂量计. . . . . . . . . . . . . . . . 44
– 所有 ICRP 116 器官(33 种 IREP 模型) – 男性和女性 – 中子(32 种中子能量)和光子(20 种光子能量) – AP、ROT 和 ISO 几何形状 – Hp(10)(个人深剂量当量)和暴露剂量 – 4 个剂量计位置(胸部中央、左领口、腰部中央、左胸口袋)
超过 50 年的经验 PCB 在全球范围内设计、制造和销售传感器。我们在全球拥有 1000 多名员工,其中有数名博士。这些技术精湛的资源使 PCB 能够提供各种产品,从麦克风到加速度计、力、扭矩、压力、负载、MEMS 传感器、剂量计和声级计。在 PCB,我们了解您的测试环境和要求的复杂性,因此我们可以为您的应用推荐最佳解决方案。
摘要 - 在辐射环境(例如空间)中,吸收剂量和剂量率的测量是一项常见的任务。这是用称为辐射剂量计的专用仪器来完成的。在空间任务中最常用的辐射剂量计中是基于辐射敏感的场效应晶体管(RADFET)的。 在本文中,我们为辐射硬化读数系统提出了一个设计概念,以实时测量带有RADFET的吸收剂量和剂量速率。 在吸收剂量和剂量率读数模式以及随后的数据处理之间的连续切换是由自适应耐受性缺陷耐受性的多处理系统对芯片(MPSOC)进行的。 使用嵌入式静态随机访问存储器(SRAM)对粒子通量的集成框架控制器(SRAM)实现了自主选择操作和耐故障模式,从而在可变辐射条件下实现了最佳性能。。在本文中,我们为辐射硬化读数系统提出了一个设计概念,以实时测量带有RADFET的吸收剂量和剂量速率。在吸收剂量和剂量率读数模式以及随后的数据处理之间的连续切换是由自适应耐受性缺陷耐受性的多处理系统对芯片(MPSOC)进行的。使用嵌入式静态随机访问存储器(SRAM)对粒子通量的集成框架控制器(SRAM)实现了自主选择操作和耐故障模式,从而在可变辐射条件下实现了最佳性能。