尊敬的基础设施和环境委员会成员,我写信给报告IE19.7中包含的建议。Noventa Energy很高兴与环境,气候和森林部门和多伦多水域合作,以制定多伦多的废水能源转移(湿)政策和程序。尽管具有技术技能和知识来开发湿系统,但与其他可再生技术相比,它们可以提供更实用,更可持续的解决方案来减少碳排放,尤其是在地理交流,电池存储或太阳能技术的密集城市地区,可能无法选择。在我们的多伦多西部医院项目中,将需要1500多个钻孔来通过地理交换系统提供相同的环境福利 - 这根本不可行。本报告中的建议将催化更多的项目,例如我们的多伦多西部医院项目以及我们整个城市正在开发的其他湿项目。通过向潜在的湿系统开发人员提供及时,详尽的信息,该市正在减轻前端的风险和不确定性,然后支持者花费大量时间和资源来开发项目。结果将是多伦多有意义的,具有成本效益的碳减少,这再次在全球范围内扮演着领先的角色 - 在商业化新的,创新的可再生能源解决方案中。
增材制造 (AM),又称 3D 打印,包含多种技术,通过根据数字 3D 模型逐层添加材料来构建物体。目前可用的各种 AM 技术主要在固化材料(例如激光熔化或光聚合)的工艺以及材料本身(例如金属合金、聚合物或陶瓷)方面有所不同。这些技术可以快速构建零件,并针对单个或批量生产进行优化和定制。在航天领域,3D 打印最初用于开发轻质且坚固的结构部件,例如天线支架。近年来,AM 技术也一直在稳步用于开发射频 (RF) 组件和有效载荷。一些简单的 3D 打印 RF 前端甚至已经在轨道上运行。随着卫星制造商和微波有效载荷子系统提供商转向该技术来满足未来太空系统的需求,未来几年太空中 3D 打印 RF 前端的数量预计将呈指数级增长。过去几十年来,随着新服务的推出以及更高频率在商业、军事和民用领域的使用,通信卫星射频有效载荷的复杂性稳步增加,其中包括固定卫星服务 (FSS)、直接广播卫星 (DBS) 服务、个人通信服务 (PCS)、移动卫星服务 (MSS) 和卫星间服务 (ISS)。这些服务需要卫星和地面站之间有可用的通信链路,用户
I.引言介绍水果分级系统项目为理解其目的和范围奠定了基础。在这个项目中,我们旨在根据各种参数(例如大小,颜色,重量和质量)开发一种综合系统来对水果进行分级。该系统将旨在满足需要有效,准确的方法来评估出售或分配水果质量的水果生产商,分销商和零售商的需求。为了实现这一目标,我们选择利用前端和后端技术的组合。对于前端,我们将使用HTML,CSS和JavaScript来创建一个用户友好的接口,允许用户无缝与系统进行交互。前端将负责显示信息,收集用户输入并提供对分级过程的反馈。在后端,我们将使用Python烧瓶作为网络框架来处理服务器端逻辑和与前端的通信。烧瓶为构建Web应用程序提供了一个轻巧,灵活的框架,使其成为我们项目的理想选择。此外,我们将利用MySQL作为数据库管理系统来存储和管理与水果,评分标准和用户信息有关的数据。MySQL为数据存储和检索提供了可靠的功能,从而确保了我们系统的可扩展性和可靠性。总体而言,水果分级系统项目旨在通过利用现代网络技术和数据库管理系统来简化分级水果的过程。通过提供用户友好的接口和鲁棒的后端功能,我们寻求
神经科学研究如何在细胞外水平上实施复杂的大脑功能需要体内神经记录界面,包括微电极和读出电路,并且可观察力和空间分辨率增加。神经记录接口的趋势用于采用高通道计数探针或具有密集间隔记录位点的2D微电极阵列,用于记录大型神经元种群,因此很难节省资源。模拟前端的低噪声,低功率要求的规范通常需要大型硅职业,这使问题更具挑战性。减轻该消费区负担的一种常见方法依赖于时间划分多路复用技术,在该技术中,在频道之间部分或完全共享读出的电子设备,同时保留录音的空间和时间分辨率。在这种方法中,共享元素必须在每个通道较短的时间段上操作,因此,在较大的操作频率和信号带宽方面,活动区域被交易。因此,功耗仅受到轻微影响,尽管其他性能指标(例如内噪声或串扰)可能会降低,尤其是在整个读取电路在模拟前端输入中多重的时。在本文中,我们回顾了针对时间划分的多重神经记录系统报告的不同实施替代方案,分析了它们的优势和缺点,并提出了提高性能的策略。
摘要 — 本文报告了从快速机载平台到地面站的高速率自由空间光通信下行链路的演示。所用的飞行平台是 Panavia Tornado,激光通信终端安装在附加的航空电子演示吊舱中。配备自由空间接收器前端的可移动光学地面站用作接收站。选择的通信下行链路波长和信标激光的上行链路波长与 C 波段 DWDM 网格兼容。开发了新的光机跟踪系统,并将其应用于两侧,以实现链路捕获和稳定。飞行测试于 2013 年 11 月底在德国曼奇的空中客车防务与航天公司附近进行。该活动成功展示了数据速率为 1.25 Gbit/s 的飞机下行链路激光通信的成熟度和准备就绪性。我们根据链路预算评估、开发的光机终端技术和飞行活动的结果概述了实验设计。试验本身侧重于机载终端和地面站的跟踪性能。可在飞机速度高达 0.7 马赫时测量性能,并传输来自机载摄像机的视频数据。在瞬时跟踪误差分别低于 60 μ rad 和 40 μ rad 时,机载终端和地面站的跟踪精度高达 20 μ rad rms。
使用多层结构实现了空气中正极表面等离子体在空气中的均匀传播,该结构由硅晶片组成,由1 µm厚的介电SiO 2层作为传播表面覆盖。而不是在使用常规散装电介质表面时在相同条件下观察到的分支流媒体,该等离子体表现出具有高度可重复性和稳定性的同质环形结构。血浆是通过在接触介电表面的钨电线上施加纳秒正脉冲来产生的。血浆以高空间分辨率进行单射击操作成像,紫外反射显微镜以及快速加强的电荷耦合耦合器件摄像头。时间和空间分辨的光学发射光谱表明,均匀的环对应于具有高N 2 + *发射区域的电离前端的传播。我们讨论了环形电离波的起源,考虑到Si-Sio 2界面的作用以及外部光源照明的效果。环电离波可能是由于分支抑制作用而导致的,这是由于在血浆发出的光子产生的界面处的光电效应。在大气压力下的环境空气中,稳定均匀的表面电离波的产生可能引起进一步的晚期等离子表面相互作用研究或流动控制应用。
摘要:先进医疗软件系统的出现为彻底改变脑肿瘤的早期检测和管理提供了一条有希望的途径,而脑肿瘤是现代医疗保健的一个关键方面。该项目深入研究了这种系统的开发,利用尖端技术提高脑肿瘤诊断和患者护理的效率和效果。该系统的核心是利用 YOLO (V8) 算法的强大功能,从 MRI 扫描中精确检测肿瘤,为临床医生提供有关患者健康状况的宝贵见解。此外,该软件促进了患者和医疗机构之间的无缝沟通,简化了预约和实时确认等流程。该系统基于一个强大的软件架构构建,包括前端的 React 和后端功能的 Python (Flask) 和 .Net (6.0),提供了一个直观的用户界面,使用户能够轻松上传 MRI 扫描、安排预约和可视化肿瘤检测结果。与 Firebase 的集成可确保安全的用户身份验证,增强患者数据的隐私和安全性。通过融合这些技术,该项目致力于打造一个用户友好、高效且集成的医疗保健解决方案,该解决方案优先考虑及时诊断和改善患者护理。总体目标是满足早期发现和管理脑肿瘤的迫切需求,最终为全球患者带来更好的健康结果。关键词:脑肿瘤检测、MRI 扫描、DL、患者参与、预约安排、用户身份验证。
内上皮片上的图案形成。4-8 在这些例子中,外部或浅层的约束或限制是使更深层结构(在生理压缩下)继续正常发育的关键机械因素。9,10 通过结合实验和计算数据的“形态力学”方法,Taber 等人 11,12 发现鸡视杯形成过程中的内陷是由外胚层和细胞外基质等外部限制因素驱动的。在发育中的脊椎动物大脑中,最近已经探索了壁内细胞和组织力学。13,14 已经讨论了成长中的大脑对周围颅骨或颅腔形成的可能生物力学影响(在成骨细胞增殖和骨化等事件中,通过拉伸经历这些事件的细胞)。 15 相反,有人提出,骨化的头骨(作为硬囊)调节大脑形态,包括大脑皮层的脑回形成,16 尽管实验和数学研究表明脑回形成可能通过大脑固有的机制进行物理处理。17-19 先前关于哺乳动物大脑-头骨机械关系的研究主要集中在骨化/矿化发生后的阶段。在早期(即成骨前)阶段,对鸡胚进行的研究提出了一个模型,其中早期神经管弯曲的出现(最前端的前脑向腹侧弯曲的现象)可能是由腹侧底层脊索或前肠施加的可能物理限制来解释的,这些结构向前延伸的程度小于前脑,20,21
摘要。最近使用的深神经网络(DNN)是通过计算单元(例如CPU和GPU)物理部署的。这样的设计可能会导致重大的计算负担,显着的延迟和密集的功耗,这是物联网(IoT),边缘计算和无人机的使用等应用的关键限制。光学计算单元(例如,超材料)的最新进展揭示了无势能和光速神经网络。但是,超材料神经网络(MNN)的数字设计从根本上受到其物理局限性的限制,例如精确,噪声和制造过程中的带宽。此外,未通过标准的3×3卷积内核完全探索MNN的独特优势(例如,光速计算)。在本文中,我们提出了一种新型的大核超材料神经网络(LMNN),该神经网络(LMNN)最大程度地利用了最先进的ART(SOTA)MNN的数字能力(SOTA)MNN,并通过模型重新参数和网络压缩,同时也考虑了光学限制。新的数字学习方案可以在建模元元素的物理限制时最大化MNN的学习能力。使用拟议的LMNN,可以将卷积前端的计算成本用于制造的光学硬件。两个公开可用数据集的实验结果表明,优化的混合设计提高了分类准确性,同时降低了计算潜伏期。提出的LMNN的发展是朝着无能和光速AI的最终目标迈出的有前途的一步。
气候变化的轨迹” NSFAGS-2235177,C。Deser(NCAR)和G. Persad(Austin U. Texas),Co-Pis,2/23-1/25,$ 985K($ 173K to Ncar)。出版物(按时间顺序分顺序)224。Deser,C.,A。S. Phillips,M。A. Alexander,D。J. Amaya,A。Capotondi,M。G. Jacox和J. D. Scott,2024年:海洋热和冷浪的强度和持续时间的未来变化:来自耦合模型模型初始条件大型合奏的见解。J.气候,37,1877-1902,doi:10.1175/jcli-d-23-0278.1。223。Hwang,Y。T.,S。-P。 Xie,P。-J。 Chen,H. -y。 Tseng和C. Deser,2024年:人为气溶胶在21世纪初期对LaNiña的持续状态的贡献。proc。natl。学院。SCI。 U.S.A.,121,(5),DOI:10.1073/pnas.2315124121。 222。 Peng,Q.,S。-P。 Xie,G。Passalacqua,A。Miyamoto和C. Deser,2024年:2023年沿海ElNiño:大气和空气耦合机制。 SCI。 adv。 ,10,EADK8646(2024)。 doi:10.1126/sciadv.adk8646。 221。 Lenssen,N.,P。Dinezio,L。Goddard,C。Deser,Y。Kushmir,S。Mason,S。Mason,M。Newman和Y. Okumura,2023年:强大的El Nino事件导致了强大的多年ENSO可预测性。 地球。 res。 Lett。 ,在印刷中。 220。 Jenkins,M。T.,A。Dai和C. Deser,2023年:PAMIP模拟中对局部海冰浓度和远程海面温度变化的北极气候反馈反应。 攀登。 dyn。 ,正在审查。 219。 J. 218。SCI。U.S.A.,121,(5),DOI:10.1073/pnas.2315124121。 222。 Peng,Q.,S。-P。 Xie,G。Passalacqua,A。Miyamoto和C. Deser,2024年:2023年沿海ElNiño:大气和空气耦合机制。 SCI。 adv。 ,10,EADK8646(2024)。 doi:10.1126/sciadv.adk8646。 221。 Lenssen,N.,P。Dinezio,L。Goddard,C。Deser,Y。Kushmir,S。Mason,S。Mason,M。Newman和Y. Okumura,2023年:强大的El Nino事件导致了强大的多年ENSO可预测性。 地球。 res。 Lett。 ,在印刷中。 220。 Jenkins,M。T.,A。Dai和C. Deser,2023年:PAMIP模拟中对局部海冰浓度和远程海面温度变化的北极气候反馈反应。 攀登。 dyn。 ,正在审查。 219。 J. 218。U.S.A.,121,(5),DOI:10.1073/pnas.2315124121。222。Peng,Q.,S。-P。 Xie,G。Passalacqua,A。Miyamoto和C. Deser,2024年:2023年沿海ElNiño:大气和空气耦合机制。SCI。 adv。 ,10,EADK8646(2024)。 doi:10.1126/sciadv.adk8646。 221。 Lenssen,N.,P。Dinezio,L。Goddard,C。Deser,Y。Kushmir,S。Mason,S。Mason,M。Newman和Y. Okumura,2023年:强大的El Nino事件导致了强大的多年ENSO可预测性。 地球。 res。 Lett。 ,在印刷中。 220。 Jenkins,M。T.,A。Dai和C. Deser,2023年:PAMIP模拟中对局部海冰浓度和远程海面温度变化的北极气候反馈反应。 攀登。 dyn。 ,正在审查。 219。 J. 218。SCI。adv。,10,EADK8646(2024)。doi:10.1126/sciadv.adk8646。221。Lenssen,N.,P。Dinezio,L。Goddard,C。Deser,Y。Kushmir,S。Mason,S。Mason,M。Newman和Y. Okumura,2023年:强大的El Nino事件导致了强大的多年ENSO可预测性。地球。res。Lett。 ,在印刷中。 220。 Jenkins,M。T.,A。Dai和C. Deser,2023年:PAMIP模拟中对局部海冰浓度和远程海面温度变化的北极气候反馈反应。 攀登。 dyn。 ,正在审查。 219。 J. 218。Lett。,在印刷中。220。Jenkins,M。T.,A。Dai和C. Deser,2023年:PAMIP模拟中对局部海冰浓度和远程海面温度变化的北极气候反馈反应。攀登。dyn。,正在审查。219。J.218。Gervais,M。L. Sun和C. Deser,2024年:预计的北极海冰损失对北美日常天气模式的影响。气候,37,1065–1085,https://doi.org/10.1175/jcli- D-23-0389.1。Zhang,X。和C. Deser,2023年:自1949年以来观察到的南大洋变暖和冷却趋势的热带和南极海冰影响。NPJ攀登。 Atmos。 SCI。 ,正在审查。 217。 Amaya,D。J.,N。Maher,C。Deser,M。G. Jacox,M。Newman,M。A. Alexander,J。Dias和J. Lou,2023年:未来的季节性气候可预测性变化。 J. 气候,正在审查中。 216。 Hall,R。J.,A。Czaja,G。Danabasoglu,C。Deser,C。C. Frankignoul和Y. -o。权,2023年:Oyashio延伸海面温度前端的新的强大额叶干扰指数。 J. 气候,正在审查中。NPJ攀登。Atmos。SCI。 ,正在审查。 217。 Amaya,D。J.,N。Maher,C。Deser,M。G. Jacox,M。Newman,M。A. Alexander,J。Dias和J. Lou,2023年:未来的季节性气候可预测性变化。 J. 气候,正在审查中。 216。 Hall,R。J.,A。Czaja,G。Danabasoglu,C。Deser,C。C. Frankignoul和Y. -o。权,2023年:Oyashio延伸海面温度前端的新的强大额叶干扰指数。 J. 气候,正在审查中。SCI。,正在审查。217。Amaya,D。J.,N。Maher,C。Deser,M。G. Jacox,M。Newman,M。A. Alexander,J。Dias和J. Lou,2023年:未来的季节性气候可预测性变化。J.气候,正在审查中。216。Hall,R。J.,A。Czaja,G。Danabasoglu,C。Deser,C。C. Frankignoul和Y. -o。权,2023年:Oyashio延伸海面温度前端的新的强大额叶干扰指数。 J. 气候,正在审查中。Hall,R。J.,A。Czaja,G。Danabasoglu,C。Deser,C。C. Frankignoul和Y.-o。权,2023年:Oyashio延伸海面温度前端的新的强大额叶干扰指数。J.气候,正在审查中。