在过去十年中,单细胞基因组学技术已经实现了可扩展的细胞类型特异性特征分析,这大大提高了我们研究异质组织中细胞多样性和转录程序的能力。然而,我们对基因调控机制或控制细胞类型之间相互作用的规则的理解仍然有限。单细胞表观基因组学和空间分辨转录组学等新的计算流程和技术的出现为探索生物变异的两个新方向创造了机会:细胞内在的细胞状态调控以及细胞之间的表达程序和相互作用。在这里,我们总结了这些领域中最有前途和最强大的技术,讨论了它们的优势和局限性,并讨论了分析这些复杂数据集的关键计算方法。我们重点介绍了数据共享和集成、文档、可视化和结果基准测试如何有助于神经科学的透明度、可重复性、协作和民主化,并讨论了未来技术开发和分析的需求和机会。
远程监测痕量大气气体(标签)的浓度(包括许多有害混合物)仍然是一个紧迫的问题。IR区域,尤其是2.5-14 µm范围,对于大气发声非常有前途,因为该范围包括几乎所有大气气体的强吸收线。此外,IR范围包括六个透明窗口。为了覆盖近红外和中期范围,通常使用非线性晶体的光学参数振荡器(OPO)的辐射[1-3]。在这项工作中,我们考虑了一个激光系统(在Solar Laser System Company设计),该系统是设计差异吸收激光龙的一部分;它提供了3–4 µM光谱范围内的纳秒辐射脉冲的可调节产生。根据激光的规格,估计了在此光谱范围内HCl和HBR沿对流层路径的可能性。提出了搜索信息波长的结果以及在上述气体的差分吸收声音中计算激光雷达回声信号的结果。
药物重新定位FDA批准的药物是药物发现的创新流。本评论阐述了药物重新定位的优点,方法和挑战。这种低成本,风险较小,耗时的药物重新定位包括有效的计算和实验方法,以确定现有药物的新指示。类似于药物发现,重新利用药物的挑战,例如选择适当的方法和目标人群,知识产权(IP)保护等。本评论还重点介绍了药物重新定位的历史和成功案例。另一种方法,两种或多种药物的药物组合已大大提高了药物重新定位的成功率。这种协同的药物重新定位是对抗各种疾病的有前途策略,例如传染病,癌症,神经系统疾病和许多罕见疾病。在本综述中描述了成功协同药物重新定位的各种例子。最后,我们可以说协同的药物重新定位为药物发现研究提供了一种新的方法。
气候变化主要是由人类活动引起的,构成了重大的全球挑战。全球各国正在整合通过《巴黎协定》等倡议来打击气候变化的努力,并设定了到2050年到达零净排放的目标。本文探讨了人工智能(AI)的潜力,作为解决气候变化的有前途解决方案,尤其是通过分析质量数据。AI可以帮助环境决策过程,优化可再生能源使用,并加速全球向低碳经济的过渡。使用OECD的公共数据,该研究通过检查其对温室气体排放,碳足迹,研究与开发的投资,可再生能源生产和回收率来研究AI在促进低碳经济方面的有效性。调查结果表明,AI在限制气体排放和碳足迹的同时支持可再生能源和回收的增长方面非常有效。但是,该研究还确定了潜在的局限性,例如从AI本身释放碳,并提出了对AI模型的进一步改进。
在当今的智能时代,医疗保健局势正在迅速发展,这是由于技术的进步以及衰老和互联社会日益增长的医疗保健需求的驱动。为了应对这些挑战,数字双胞胎的概念已成为改变下一代医疗服务的有前途解决方案。这项工作概述了基于数字双胞胎的智能医疗保健服务的关键方面和好处及其革新医疗保健行业的潜力。dwt涉及创建物理实体的数字复制品或模型,在这种情况下,是个人的健康和医疗数据。通过利用来自各种来源的实时数据,包括可穿戴设备,电子健康记录和医学成像,数字双胞胎可为个人的健康状况,治疗史和预测分析提供整体视图,以实现未来的健康状况。这项工作提供了有关数据驱动方法的信息,使医疗保健提供者能够做出更明智的决定并量身定制个性化治疗计划/改善患者的结果。
摘要:SARS-COV-2变体和耐药突变体的出现要求其他口服抗病毒药。SARS-COV-2类木瓜样蛋白酶(PL Pro)是一个有前途但具有挑战性的药物靶标。在这项研究中,我们设计和合成了85个与新发现的Val70 UB位点和已知的BL2凹槽口袋结合的非共价PL Pro抑制剂。有效化合物抑制PL Pro,其抑制常数K I值在13.2至88.2 nm。具有八个导线的PL Pro的共结构结构揭示了它们的相互作用模式。体内铅12682抑制了SARS-COV-2及其变体,包括Nirmatrelvir抗性菌株,EC 50从0.44到2.02 µm。在SARS-COV-2感染小鼠模型中,用JUN12682进行口服治疗可显着提高生存率,并降低肺病毒载量和病变,这表明PL Pro抑制剂是有希望的口服SARS-COV-2抗病毒候选者。
这篇观点文章深入研究了一位精神健康顾问的生态代谢疗法(KMT),他试图弥合新兴研究与现实世界临床应用之间的差距。基于作者的临床经验,该文章传达了KMT在心理保健方面的潜力,强调了其治疗前途和从动手的患者互动中获得的见解。采用KMT需要对社会,情感和饮食领域进行调整,尤其是在各种心理健康环境中,但在适当的指导和支持下,这些挑战是可以克服的。本文鼓励捕获定性数据,并采取定量措施,并提倡一种方法,以考虑改善心理健康对家庭和社区的广泛含义。随着领域的进步,研究人员和临床医生之间的跨学科合作将在完善和扩大KMT的应用方面至关重要,最终增强了患者的结果并提高了心理保健的标准。
一个好的数学美理论比任何当前的观察都更实用,因为关于物理现实的新预测可以自洽地得到验证。这种信念适用于理解深度神经网络的现状,包括大型语言模型甚至生物智能。玩具模型提供了物理现实的隐喻,允许以数学形式表达现实(即所谓的理论),随着更多猜想得到证实或反驳,该理论可以得到更新。人们不需要在模型中呈现所有细节,而是构建更抽象的模型,因为大脑或深度网络等复杂系统有许多松散的维度,但对宏观可观测量产生强烈影响的僵硬维度要少得多。这种自下而上的机械建模在理解自然或人工智能的现代时代仍然很有前途。在这里,我们阐明了按照这一理论范式发展智能理论的八个挑战。这些挑战是表示学习、泛化、对抗鲁棒性、持续学习、因果学习、大脑内部模型、下一个标记预测和主观经验机制。
作为化肥的环保替代品,生物量化剂在寻求可持续农业方面具有重要意义。尽管存在挑战,例如监管障碍和技术复杂性,但该领域的机会是巨大的。了解根际工程可以提高生物肥料的效率,从而确保它们提供最大的作物益处。生物监管剂的遗传工程为特定的作物需求量身定制生物量化剂提供了一种途径,从而有可能提高其有效性。多特征,多应变和多营养微生物配方有可能彻底改变生物肥料市场,从而实现定制的解决方案,以满足一系列农业需求。这些创新得到了市场动态和纳米技术的整合的补充,这可以进一步提高生物培训的性能和覆盖范围。这样的机会表明生物肥料商业化的前途光明,可持续农业可以从先进的配方中受益,并提高对土壤植物相互作用的了解。BioFertilizers的前景很有希望,为滋养世界不断增长的人口提供了一种更可持续和环保的方法。
溶剂是影响植物材料(简单)中主动化合物提取有效性的关键因素。这项研究旨在根据抗氧化剂和酪氨酸酶抑制活性的参数以及太阳保护因子(SPF)值来确定用于提取pepino果实的最佳类型和浓度。使用用乙醇或乙酸乙酯作为溶剂进行浸渍法进行了提取,分别以50%,70%和96%的浓度进行提取。使用1,1-二苯基-2-苯羟基羟基(DPPH)方法评估提取物的抗氧化活性。使用体外测试进行了酪氨酸酶的抑制和SPF值的测定。结果表明,就抗氧化活性,酪氨酸酶抑制和SPF值而言,乙酸乙酸乙酯提取物优于乙醇提取物。在乙酸乙酯溶剂中,浓度为96%,提供了最强的抗氧化剂,酪氨酸酶抑制活性,而在SPF测试中则是第二高。可以得出结论,将pepino果实作为防晒霜的有前途化合物提取的最佳溶剂是乙酸乙酯的96%。