龙舌兰,俗称剑麻或龙舌兰,属于龙舌兰科,是一种旱生多年生叶纤维作物。在印度,剑麻主要分布在奥里萨邦、马哈拉施特拉邦和南部各州。印度可用的剑麻种类有龙舌兰、坎塔拉龙舌兰、克鲁斯龙舌兰、阿曼尼恩西斯龙舌兰和四冷龙舌兰。在这些类型中,A. sisalana 是商业类型,用于纤维生产。剑麻可以在干旱条件下生存,但适合分布均匀、中等降雨的地区。它可以种植在各种土壤上。然而,排水良好的轻质石灰质和砾石土壤是合适的。剑麻主要通过鳞茎和根进行无性繁殖。对于剑麻种植,建议使用 1 立方英尺的坑。坑里填满土壤和有机物混合物。种植方法有两种。接下来是单行种植和双行种植。双行种植的利润总是更高。种植密度取决于土壤的性质和肥力状况、耕作类型、种植者的投资和管理能力。一些合适的间距是 4 m + 1 m X 1 m(4000 株/公顷)和 3 m + 1 m X 1 m(5000 株/公顷)。种植在季风雨开始时进行,以便植物生长良好。在最初几年,不建议收割叶子,行间有足够的空间用于间作马豆、小米和其他小谷子、黑豆等。至少在最初三年,锄草和除草是必不可少的。每次除草后,建议施用 60:30:60 公斤 N、P 2 O 5 和 K 2 O/公顷肥料。叶子的收割从作物生长 3 年零 6 个月时开始。第一次切割 16 片叶子,每次切割时在植物上留 12 片叶子。然后将收获的叶子运送到提取棚,并在同一天或最好第二天尽早部署 raspador 剥皮机提取纤维。将纤维反复在水中冲洗,然后铺在绳子或电线上,直到它足够干燥。一般来说,印度剑麻的平均产量不超过 600 公斤/公顷。然而,改进技术并对剑麻种植园进行适当的管理可以生产 1.5 吨/公顷。一公顷剑麻种植园通常可实现 20,000 卢比的净利润。简介
摘要 — 使用植物纤维替代碳纤维或玻璃纤维等人造纤维是当今许多研究人员的研究课题。植物纤维具有可再生、可降解、低毒性和低成本等特点。本文评估了环氧聚合物基质中的剑麻纤维与玻璃纤维混合复合材料的拉伸强度、弯曲强度和弹性模量的力学性能。将纤维在 10% 重量的氢氧化钠溶液中处理,然后根据 ASTM D3039 和 D790 标准在万能试验机上进行拉伸试验。性能最好的复合材料是剑麻 + 玻璃纤维混合物,拉伸强度为 86%,弹性模量为 64%。在弯曲试验中,结果显示混合复合材料的最大应力为 119%,较大断裂应力为 138%。
摘要:防弹衣对于减轻穿透性伤害和挽救士兵生命至关重要。然而,弹道撞击防弹衣会导致背部变形 (BFD),对战场造成致命伤害构成严重威胁。该研究进行有限元建模以评估防弹衣面板的防护性能。数值模拟考虑了各种参数,包括撞击速度和弹丸撞击角度,这些参数用于估计复合材料层压板的残余速度和损伤模式。使用基于有限元分析的 LS-DYNA 代码进行模拟。研究的主要结果揭示了剑麻和玻璃纤维复合材料的弹道行为的重要见解。该研究确定了剑麻和玻璃纤维复合材料之间的具体响应、损伤发展模式和比较分析。研究结果对于开发先进材料以改善弹道防护具有实际意义。
摘要剑麻纤维和基于生物的环氧树脂的组合具有良好的潜力,可提供具有改进或同等机械性能的环保生物复合材料。然而,由于键在化学结构(极性)函数组中的电荷在原子上的不同分布引起的两种材料之间的较差相互作用需要通过各种技术对组成部分的一个表面进行修改。本文讨论了有关多种治疗方法的可用文献,以通过实现有利的润湿性,机械互锁以及通过化学键合的改善相互作用来改善剑麻纤维和热套环氧矩阵之间的粘附。表明,在NaOH溶液中洗涤纤维,然后冲洗和干燥是普遍的化学处理。通过NAOH处理,研究人员观察到了清洁纤维,这促进了环氧基质的更好粘附。偶联剂(例如硅烷处理)表现出对纤维吸收的抗性的提高。热处理通过增加纤维素的结晶度,从而影响纤维的形态。还观察到,纤维矩阵粘附的改善对复合材料的冲击强度有不利影响。
Peth-Naka. Sangli, MH (印度) 摘要。最近,复合材料是使用天然纤维素纤维与基质制备的,由于其稀有性、高比机械强度、可用性、可再生性、可降解性和环境友好性,吸引了研究人员的眼球。这项工作试图形成一个典型的拉伸试验和冲击试验方法的样本,并且材料通常具有更好的机械性能,从而增强了纤维与基质之间的兼容性。复合材料采用环氧树脂基质和剑麻纤维手工铺层法制备。计划对制备的样品进行测量,以测量其机械性能,如耐久性、冲击强度和制备材料的应用。关键词:摩擦、拉伸试验、环氧树脂、剑麻纤维、弯曲。复合材料概述
近年来,天然纤维增强复合材料由于其质量轻、耐磨、可燃、无毒、成本低和可生物降解等特性而受到广泛关注。在各种天然纤维中,亚麻、竹、剑麻、大麻、苎麻、黄麻和木纤维尤其受到关注。世界各地对利用天然纤维作为增强材料来制备各种类型复合材料进行了大量研究。然而,缺乏良好的界面黏附力、熔点低和耐湿性差使得天然纤维增强复合材料的使用不那么有吸引力。天然纤维的预处理可以清洁纤维表面、对表面进行化学改性、停止吸湿过程并增加表面粗糙度。在各种预处理技术中,接枝共聚和等离子处理是天然纤维表面改性的最佳方法。天然纤维与乙烯基单体的接枝共聚物可在基质和纤维之间提供更好的粘合性。本文回顾了预处理天然纤维在聚合物基质复合材料中的应用。还讨论了天然纤维表面改性对纤维和纤维增强聚合物复合材料性能的影响。POLYM. ENG. SCI.,49:1253–1272,2009 年。ª 2009 年塑料工程师协会
近年来,已经进行了许多尝试,以完全或部分从天然纤维作为可持续发展的一部分制成复合材料,与其他天然纤维(如亚麻,剑麻,竹子,竹子和香蕉叶)相比,其强度优于强度。玄武岩纤维是一种天然可用的矿物纤维之一,可以克服天然纤维机械强度低的问题。这项研究的目的是确定杂交对玄武岩纤维重量不同的玻璃纤维复合材料的影响。复合层压板是使用普通双向玻璃纤维的手篮法和带有环氧树脂作为热固性基质材料的平原双向玄武岩纤维制成的。玄武岩纤维的重量分数在不同层压板的开发过程中变化为0%,26%,54%,84%和100%,并使用ASTM标准研究了它们的密度和机械表征。进行了密度测试,以评估不同层压板的特定强度。评估不同纤维重量分数对复合,拉伸,弯曲和冲击测试的机械特性的影响。可以观察到,与非杂化复合材料相比,杂化复合材料在弯曲,拉伸和撞击测试中表现出优异的特性。这项研究中提出的结果表明,在杂化复合材料中,不同的纤维重量分数在混合复合材料的性质中起着至关重要的作用。单向方差分析(ANOVA),以查看测得的机械性能之间是否存在统计学上的显着差异。作为复合材料的主要好处之一是它们的强度与体重的高比例,对特定特性进行了比较,并观察到杂交的积极作用。
近几十年来,天然纤维增强复合材料(NFRC)已成为传统材料(例如玻璃纤维)的有吸引力的替代品,并吸引了研究人员和学者,尤其是在环境保护的背景下。环境因素及其对可再生材料的基本特性的影响正在成为越来越流行的研究领域,尤其是天然纤维及其复合材料。尽管该研究领域仍在扩展,但天然纤维增强的聚合物复合材料(NFRC)在各种工程环境中发现了广泛使用。natu-ral纤维(NFS),例如菠萝叶(Palf),竹子,屁股,椰子纤维,黄麻,香蕉,亚麻,大麻,剑麻,kenaf和其他人具有许多理想的特性,但是他们的发育和使用了许多具有许多妇女的研究人员。这些纤维由于其各种有利的特性,例如轻度,经济性,生物降解型,出色的特定强度和竞争性机械性能,引起了人们的关注,这使它们成为有希望用作生物材料的候选人。因此,它们可以作为传统复合纤维(例如玻璃,芳香和碳)在各种应用中的替代材料。此外,天然纤维吸引了越来越多的研究人员的兴趣,因为它们在自然界和农业和食品系统的副产品中很容易获得,这有助于改善环境生态系统。本文提供了NFRC的简要概述,研究了它们的化学,物理和机械性能。这种兴趣共同涉及寻找环保材料,以取代建筑,汽车和包装行业中使用的合成纤维。天然纤维的使用不仅是逻辑的,而且是实用的,因为它们的纤维形式可以通过化学,物理或酶促处理很容易提取和强度。它还强调了与NFRC相关的一些重大进展,从经济,环境和可持续性的角度来看。此外,它还简要讨论了他们的各种应用,都重点关注他们对环境的积极影响。
新兴的研究主要涉及与未来行业新材料设计有关的环境和经济问题。在过去的几十年中,各种工业部门都试图用天然纤维作为聚合物复合材料的增强剂代替合成纤维。复合材料由于其有利和出色的特性而为一个年龄提供了大量的研究和工业工作。此外,它们可以通过低投资生产和处理[1]。复合材料是纤维/填充剂和矩阵(聚合物)的组合。可以通过使用基本聚合物基质的杂化(一两个纤维)来安排纤维和基质的组合。使用纤维的主要目的是为复合材料提供强度。影响纤维的特性的因素是长度,方向,形状和材料[2]。基于用于制造的聚合物,可以自然或合成选择纤维。纤维称为天然纤维,例如黄麻,拉米,剑麻,大麻,coir,grewia optiva,silk,bamboo等。另一方面,通过各种人造过程制造的纤维称为合成纤维,例如碳,凯夫拉尔,玻璃等。自然和合成纤维在用于制造复合材料的聚合物方面都有其自己的优点和缺点。天然纤维的另一个主要缺点是由于存在纤维素而对水的影响。有时,纤维以混合形式应用于两者的优势与合成纤维相比,天然纤维是环境友好,可再生,便宜,非危险性,非抛光和易于使用的,但是使用天然纤维的弊端与合成纤维相比是低的机械性能[3]。这种亲水性会导致纤维和基质之间的界面粘合不佳。另一方面,合成纤维,是疏水材料,与聚体形成良好的键合。