2023年2月3日,星期五,由于柳叶刀出版物的出版物,Lumc在全国范围内入选了新闻。在此且在各种媒体中,据报道,用药物剂量的患者量身定制为DNA概况,严重副作用的可能性降低了30%。下面您会找到有关经常询问有关DNA药物通行证的问题。制作DNA轮廓对我有用吗?从已知会显着影响DNA谱的39种药物之一开始,制作DNA谱是有用的。在我们的研究中,患者使用了这39种药物中的1种或更多。在许多其他药物中,DNA谱在药物的功能或副作用的发生中不起作用。您的药剂师或医生可以指示DNA剖面对于您收到的药物是否重要,因此有可能使用DNA剖面的可能性是否有用。带有研究药物的表格在本文档的末尾附上附录1。
摘要。本文旨在通过有限元三维数值分析,展示双隧道对收敛剖面的影响,考虑了几种岩体本构模型:弹性、弹塑性和粘塑性。衬砌考虑了弹性和粘弹性本构模型。对于衬砌的粘弹性本构模型,考虑了混凝土的徐变和收缩。对于本文研究的案例,考虑到岩体和衬砌的弹性行为,观察到双隧道收敛剖面幅度差异高达 9%。对于其他模型,即弹性衬砌的塑性岩体、弹性衬砌的粘塑性岩体和粘弹性衬砌的粘塑性岩体,观察到的差异很小。考虑到粘塑性岩体,与弹性衬砌相比,粘弹性衬砌的存在使变形增加了约 20%(在隧道施工结束时),长期行为增加了约 40%。
导弹及其技术控制制度 (MTCR) 是各国寻求防止导弹和无人驾驶飞行器 (UAV) 扩散的主要多边出口控制制度。近年来,高超音速导弹在 MTCR 和军备控制讨论中受到越来越多的关注。高超音速导弹通常结合了以 5 马赫(即五倍音速)及以上速度进行长时间飞行的能力,以及能够以可变飞行剖面的方式进行机动的能力。高超音速导弹系统主要有两种类型:高超音速助推滑翔系统和高超音速巡航导弹 (HCM)。高超音速助推滑翔系统通常由弹道火箭助推器和高超音速滑翔飞行器 (HGV) 组成。HCM 是通常使用吸气式超音速冲压发动机的巡航导弹。尽管这两种类型涵盖了目前正在开发的大多数高超音速导弹系统,但可能存在一系列结合不同推进系统、弹道和滑翔能力的高超音速导弹设计。高超音速导弹既被设想作为能够确保二次打击能力的核武器运载系统,又被设想作为常规精确打击或快速反应武器。
摘要。光学元面具有无与伦比的灵活性,可以通过下波长的空间分辨率操纵光场。将元面耦合到具有强光学非线性的材料可能允许超快时空光场调制。但是,到目前为止所证明的大多数元整口是线性设备。在这里,我们在实验上证明了同时使用单层等离子式肩面与纤维激光腔中的Epsilon-Near-Zero(ENZ)材料强耦合。虽然元表面的几何阶段被用来将激光器的横向模式从高斯束转换为带有轨道角动量的涡旋束,但通过Q -Switching过程,ENZ材料的巨大非线性可饱和吸收使脉冲激光产生。在激光腔中直接整合时空跨表面可能为开发具有量身定制的空间和时间剖面的微型化激光源铺平了道路,这对于多种应用来说是有用的,例如超级分辨率成像,高密度光学存储,高密度光学储存以及三维激光射击光刻。
目前,深基坑开挖引起的结构损伤的早期评估方法由于建模理想化(分析简化)和无知(信息不完整)而具有很大的不确定性。本文实施了土-结构相互作用的弹塑性两阶段解决方案,以预测建筑物对相邻的带支撑深基坑的响应。然后使用该土-结构相互作用解决方案研究两个案例研究中的不确定性。进行了全局敏感性分析,结果表明,地面运动剖面的预测是早期建筑物损伤评估中不确定性的主要来源。当目标建筑物被建模为等效梁时,由于无知和与结构分析模型相关的理想化而导致的不确定性也有很大贡献。然而,使用二维弹性框架结构模型代替等效梁可以大大降低评估的不确定性。考虑到不确定性的存在,提出了一种概率分析方法来量化预测由于开挖引起的下沉造成的潜在建筑物损坏时的不确定性。开发了一种称为“开挖-结构相互作用中的不确定性量化”(UQESI)的计算机程序来实现这种概率分析方法。
基于微波辐射与降水相互作用的基本关系,微波卫星降水估计最有望从太空定量估计降雨量。目前,DMSP 专用传感器微波成像仪 (SSM/I) 上的低分辨率通道采样的空间分辨率比典型对流雨带中降雨产生的尺度大几倍。机载仪器可以提供降水云的详细微波辐射特性视图。在本文中,作者展示了 1993 年在西太平洋进行的热带海洋全球大气耦合海洋-大气响应实验期间收集的同步精细尺度(1-3 公里分辨率)共置飞机辐射和飞机降水雷达测量值。通过故意将飞机数据集的分辨率从其原始分辨率降低到当前和未来的星载传感器的分辨率,检查了传感器分辨率对组合辐射计-雷达垂直剖面降雨反演算法(为降水比对计划 2 开发和使用)的影响。雷达剖面的增加对柱状霰含量的反演值的影响大于柱状雨含量。柱状霰的反演值也明显小于之前公布的陆地降雨结果。结果
摘要 高效的轨迹预测工具将成为未来基于轨迹的运营 (TBO) 的关键功能。除了管制员的行动之外,爬升飞行中的不确定性是飞行轨迹预测误差的主要组成部分。出于运营方面的考虑,飞机起飞重量和爬升速度意图(定义爬升剖面的关键性能参数)并不完全适用于基于回合的轨迹预测基础设施。在空中交通流量管理范围内,扇区进入和退出时间(包括爬升结束和下降开始的时间)是需求容量平衡过程的主要输入。在这项工作中,我们专注于爬升轨迹的不确定性,以量化和分析它们对爬升至巡航高度的时间的影响。我们通过飞机飞行记录数据集(即 QAR)使用了模型驱动的数据统计方法。根据此分析,为飞机起飞重量和速度意图生成了概率定义。获得了这些爬升参数与飞行距离之间的回归,以减少战略层面的不确定性。此外,通过自适应不确定性减少来降低爬升不确定性也在飞行战术层面得到体现。通过模拟,说明了降低飞机质量不确定性对爬升时间的影响。关键词:空中交通管理、轨迹预测、不确定性量化、BADA 缩写
摘要 利用解析分析,我们研究了主要造成摩擦阻力的近壁面模式如何根据湍流槽道流动的平均速度分布形状而放大或抑制。根据 K¨uhnen 等人 (2018) 的最新研究结果,他们将平均速度分布修改得更平坦,并实现了显著的阻力减少,我们引入了两种类型的人为平坦湍流平均速度分布:一种基于 Reynolds 和 Tiederman (1967) 提出的湍流粘度模型,另一种基于层流的平均速度分布。特别注意的是,体积和摩擦雷诺数都保持不变,因此只能研究平均速度分布变化的影响。这些平均速度剖面在解析分析中用作基流,通过奇异值(即放大率)的变化来评估与近壁相干结构相对应的波数频率模式的响应。修正后的平均速度剖面的平坦度通过三种不同的测量方法量化。一般而言,发现更平坦的平均速度剖面会显著抑制近壁模式。此外,发现增加壁面附近平均速度梯度对于通过缓解临界层来抑制近壁模式具有重要意义。
鉴于大语言模型(LLMS)的出色表现,出现了一个重要的问题:LLM可以进行类似人类的科学研究并发现新知识,并充当AI科学家吗?科学分解是一个迭代过程,需要有效的知识更新和编码。它涉及理解环境,识别新的假设以及对行动的推理;但是,没有专门为LLM代理的科学发现设计的标准化基准。响应这些限制的局面,我们引入了一个新颖的基准,即自动基准,该基准包括必要的方面,以评估自然科学和社会科学中的科学发现的LLM。我们的基准测试基于因果图剖面的原理。它挑战模型以发现隐藏的结构并做出最佳决策,其中包括生成有效的理由。通过与甲骨文进行交互性结合,这些模型通过战略干预措施迭代地完善了他们对不认识的相互作用,化学和社会传播的理解。我们评估了最新的LLM,包括GPT-4,Gemini,Qwen,Claude和Llama,并且随着问题的复杂性的增加而观察到显着的性能下降,这表明机器和人类智慧之间的重要差距表明,未来LLMS的未来发展需要考虑。
使用 Thorpe 排序和尺度分析对 2017 年春季收集的一些高分辨率 CTD 数据进行了分析,包括常用的“Thorpe 尺度”方法和较少使用的方法,该方法基于直接估计“可用翻转势能”(AOPE):混合“湍流斑块”中原始密度剖面与排序密度剖面的势能之间的差异。剖面仪的速度各不相同,因此空间(垂直)采样不均匀。开发并描述了一种方法,将 Thorpe 缩放和 AOPE 方法应用于这种不均匀采样的数据。 AOPE 方法似乎对“背景”浮力频率 N 的估计(约束性较差)不太敏感。虽然这些方法通常用于首先估计湍流动能的耗散率 « K,但真正的目标是估计密度扩散率 K r,从而估计混合对密度分布的净改变。两个易于测量的无量纲参数被提出作为混合斑块“年龄”或“状态”的可能指标,这可能有助于解决总湍流能量和耗散如何在动能和势能成分之间分配的问题,以及测量的 AOPE 中有多少最终会改变背景分层。下面提供了一个关于其如何工作的推测性示例。