电子设备在从汽车和智能手机到医疗设备,设备等的所有事物中都起着至关重要的作用。随着新技术的快速进步和部署,使用旧一代硬件的设备很快就会过时,并丢弃了其最新同行的设备。例如,平均智能手机在升级前估计要有2 - 3年[29]。在2019年,电子产品的这种快速消费周期的电子废物量约为5360万吨(MT),预计该数字将在2030年每年迅速增长到74(MT)以上,使电子废物以每年2亿吨的2吨[9]成为增长最快的废物流。同时,电子废物的回收率每年仅增长0.4吨。电子产品是一些最复杂的废物流。这包括用于减少导电迹线的焊料或金和铜的熔点,半导体材料的熔点,例如用于高性能转移的半导体材料,例如用于高性能转移的木质材料,热塑性和热塑性树脂以及各种特种化学物质,例如阻燃剂。尽管这些材料对各自的应用具有理想的特性,但其中许多材料也具有剧毒,对人类健康和环境正义具有重大影响。复杂的性质和危险材料为回收施加了高昂的成本,这导致许多更富有,更发达国家将其电子垃圾发送到国外[30]。在这项工作中,我们探索了图。1。具体来说,我们可以创建一个完全圆形的生产cy-cle,其中可以通过自然生物周期回收,再生或再生电子产品?我们强调,设计包含可生物降解材料的真实设备的这种愿景不是依赖尚未发明的技术的抽象未来。在这项工作中,我们证明可以构建端到端功能鼠标,该端机鼠标结合了现有的可生物降解材料和制造技术。我们选择一只鼠标作为案例研究,并表明我们可以立即减少体现碳足迹并通过设计减轻电子废物的危害。我们通过可持续HCI(SCHI)[2,17,22]的镜头来解决电子废物的问题,并列出了我们在下面概述的设计和原型电子设计的四个指导原理:
然而,由于许多人的安全危在旦夕,每一步和停止,他们都需要尽最大的谨慎处理。这就是为什么锂离子电池带有许多法规要求检查员考虑的原因。即使他们的电池化学被认为是最安全的,但在不小心处理时,锂离子电池仍会构成重大风险。锂离子电池的高压性质带有电气危害,例如短路,电动性,电击或燃烧,而电池内部的化学成分(电解质)可能会泄漏出来并引起中毒或腐蚀。锂离子电池容易容易失控。如果温度超过一定阈值,则细胞开始排气热气体,从而进一步增加温度,并最终导致点火,爆炸和明显的危险火灾。电池存储越大,失控火灾的风险就越大。发生火灾时,锂离子电池会散发出剧毒且危险的高氢化氟化物的云,它们可能在1-2英里的距离上扩散,可能导致死亡或永久视觉缺陷,失明或慢性肺部病以及长期疾病。氟化氢很容易,快速地穿过皮肤并进入体内的组织。那里会损坏细胞,并使它们无法正常工作。气体,即使在低水平下,也会刺激眼睛,鼻子和呼吸道。在高水平的氟化氢中呼吸可能导致不规则的心跳或肺部的液体积聚。在较低的水平上,呼吸氟化氢会损害肺组织,并导致肺部肿胀和液体积累(肺水肿)。眼睛暴露于氟化氢可能会导致眼睛长时间或永久性视觉缺陷或眼睛破坏。在因氟化氢呼吸而受到严重伤害后生存的人可能会遭受持续的慢性肺病。现在,计划检查员将根据对健康乃至人类生命的巨大且不可接受的危险而决定提出的提案;以及食物链中的动物和农作物的农作物?在锂离子电池生命周期的每个阶段的安全法规中,似乎没有有关锂离子电池的法规和指南的更新信息,但是以下三个文档似乎是在等待更新的文件:•电池指令2006/66/EC:这是EU指导的指南,可为成员们提供针对成员的指南,并分配成员的欧文化和分配。其目的是改善电池和蓄能器的环境性能。该指令很快将被新的法规取代,该法规将为所有欧盟成员国的竞争环境升级。•通用产品安全指令(GPSD):GPSD通过EN标准提供了产品安全标准,以保护消费者免受潜在危害。
筛查从罗米河分离的突变真菌,以降低炼油厂的污水污染物 Bala S. Hafsat 1; Mohammed S.S.D 2; Maiangwa Jonathan 1和Musa Nomsu 1 1微生物学系,纯净和应用科学学院,尼日利亚卡杜纳州立大学2污染意味着周围的任何改变;但是它在使用中受到限制,尤其是意味着环境的物理,化学和生物学品质的任何恶化。本研究的目的是筛查和突变从罗米河分离出来的真菌联盟,以降低炼油厂废水。炼油厂的废水样品被无菌地收集到卡杜纳炼油厂的储罐下的无菌瓶中,尼日利亚的卡杜纳州卡杜纳州(KRPC)卡杜纳州使用无菌技术进入无菌瓶中。使用标准方法进行了理化分析。使用标准技术进行了包括真菌分离株的突变的样品的真菌分析。使用常规技术和分子技术实现了突变真菌分离的突变真菌的鉴定。样品的物理化学特性的结果表明,大多数参数都在标准组织设定的可接受的极限之内,并且参数支持真菌的生存和增殖。在这项研究中,A。versicolor和A. quadrilineatus对紫外线辐射敏感。据观察,尼日尔曲霉菌的发生率最高(29.55%)(29.55%),其次是quadrilineatus(27.77%),烟曲霉(27.77%),烟曲霉(22.73%)和鳄鱼versicolors versicolor(20.455%)。筛查八天后观察到中等至最大的生长。关键字:筛选,突变真菌,财团,生物降解,炼油厂废水。引言环境污染意味着周围的任何改变;然而,它的使用尤其是指环境的物理,化学和生物学质量的任何恶化(Mosley等,2014; Ferguson等,2020)。大量废水已释放到环境中。在大多数发展中国家,由于现有治疗费用高,行业在没有治疗的情况下排放废水。炼油厂废水是剧毒的,由于其中存在石油碳氢化合物,对附近社区构成了令人难以置信的威胁。因此,必须对石油炼油厂进行充分处理以符合已建立法规的质量标准,然后才能排出流中(Musa等,2015; Santo等,2015)。石油和石油产品的生物修复(或微生物分解)具有相当大的经济和环境重要性。石油是有机物的丰富来源和碳氢化合物,很容易被多种微生物进行有氧攻击(Ataikiru等,2017)。丝状真菌通过产生有能力的酶来降解柴油和煤油在降解柴油中起重要作用,因为它们的侵略性生长,
砷(AS)是一种剧毒的金属,它会干扰植物的生长并破坏植物中各种生化和分子过程。在这项研究中,通过对根部内生菌的缝合体和静脉细菌的联合接种s sp。ISTPL4。 进行了一项随机实验,其中水稻在受控条件和压力条件下生长。 对照组由未经治疗和未压力的植物(C1),治疗和未压力的植物(C2),压力和未处理植物(T1)以及受压力和处理的植物(T2)组成(T2)。 各种表型特征,例如芽长(SL),根长度(RL),新鲜重量(SFW),根新鲜重量(RFW),芽干重(SDW)和根干重(RDW)和生化参数,以及绿比植物含量,蛋白质含量,蛋白质含量以及抗氧化剂的剂量。 在T2中增加了各种抗氧化剂酶的活性,随后是T1植物。 此外,在4.11μmolmg -1,2.53μmg -1,2.53μmg -1和3.62μmg -1,分别分别在4.11μmolmg -1,2.53μmg -1,2.53μmg -1,2.62μmg -1 fw植物中发现了高浓度的植物激素(ET),Gibberellic Acid(GA)和细胞分裂素(CK)。 AA的结果表明,与T1植物的根相比,T2植物的根(131.5 mg kg -1)的积累增加了(120 mg kg -1)。 它表明,与未接种的植物相比,微生物处理植物根部的积累和隔离量增加(T1)。ISTPL4。进行了一项随机实验,其中水稻在受控条件和压力条件下生长。对照组由未经治疗和未压力的植物(C1),治疗和未压力的植物(C2),压力和未处理植物(T1)以及受压力和处理的植物(T2)组成(T2)。各种表型特征,例如芽长(SL),根长度(RL),新鲜重量(SFW),根新鲜重量(RFW),芽干重(SDW)和根干重(RDW)和生化参数,以及绿比植物含量,蛋白质含量,蛋白质含量以及抗氧化剂的剂量。在T2中增加了各种抗氧化剂酶的活性,随后是T1植物。此外,在4.11μmolmg -1,2.53μmg -1,2.53μmg -1和3.62μmg -1,分别分别在4.11μmolmg -1,2.53μmg -1,2.53μmg -1,2.62μmg -1 fw植物中发现了高浓度的植物激素(ET),Gibberellic Acid(GA)和细胞分裂素(CK)。AA的结果表明,与T1植物的根相比,T2植物的根(131.5 mg kg -1)的积累增加了(120 mg kg -1)。它表明,与未接种的植物相比,微生物处理植物根部的积累和隔离量增加(T1)。我们的数据表明,这种微生物组合可通过增加SOD,CAT,CAT,PAL,PPO和POD等抗氧化剂的活性来减少植物的毒性作用。此外,水稻植物可以承受由于在存在微生物组合的情况下的植物激素的主动合成而承受的应力。
摘要:铅提供有效的屏蔽层抗辐射,因为铅具有高密度和原子数,从而使其有效吸收X射线光子。铅围裙是用于保护患者免受不必要的暴露和放射学人员免受职业暴露的辐射保护服装。除了良好的辐射保护铅被认为是重金属,由这种材料制成的围裙可能繁琐而累人,尤其是长时间。也是铅是剧毒物质,如果不正确处理和处置,则带来环境和健康风险。研究人员正在积极探索辐射屏蔽围裙中铅的替代品,其材料具有钨,二硫酸钡,硫酸钡和某些聚合物复合材料以及某些由于其可比的辐射屏蔽效应而出现的潜在替代品,而毒性的毒性比铅低于铅。铅替代复合材料的三种组合W-SN-BA-PVC,W-SN-CD-PVC,Sn-GD-W-PVC在宽光束几何学的诊断放射学的能量范围内进行了研究。与含有复合材料的标准铅相比,在30-60 KEV和结果之间评估了这些材料在辐射衰减方面的辐射屏蔽效应。没有铅替代复合材料可在低Energie 30 KEV中提供更好的保护。复合W-SN-BA-PVC可提供相当大的衰减,但始终低于标准。复合材料W-SN-CD-PVC在40-60 KEV内显示出更好的衰减,而SN-GD-W-PVC在60 KEV时显示出更好的衰减。光电效应绝大多数主要主导了该能量范围内的能量转移和吸收。因此,铅替代复合屏蔽层可以有效地屏蔽40至60 KEV范围内的X射线能量。关键字:屏蔽效率,辐射屏蔽,铅的替代品,复合材料,蒙特卡洛模拟1。引入辐射屏蔽服装或铅围裙通常用于保护医疗患者和工人在医院,诊所和牙科办公室的诊断成像期间暴露于直接和继发辐射。使用类似的材料用于其他应用,例如用于保护在机场扫描仪或类似设备附近工作人员的行李扫描仪。在大多数这些环境中,典型的峰X射线能量范围为60至120 kVp,对应于大约35-60 keV的平均能量[1]。辐射屏蔽的有效性随成分材料的光电衰减系数,服装的厚度和辐射的能量谱[1]而有很大变化。传统上由铅制成的围裙已用于诊断放射学和介入试验中,因为它们在降低患者和操作员的辐射剂量方面具有非凡的效率。没有这些盾牌,直接接触电离辐射可能会导致健康组织中的生物学损害。尽管铅盾牌对减轻辐射剂量的有益,但对患者和辐射人员进行了疑问,但对长时间使用的安全性提出了疑问。证明了使用铅围裙的使用与背痛的发展之间的关系[3]。最近的一项研究由于铅的密度,这些盾牌是如此重,因此其携带是一项负担重大的任务,尤其是在长期过程中,例如在介入的血管造影中,如Moore等人。此外,由于铅是有毒元素,因此长期使用可能会危害用户的健康[4]。最近,研究人员对寻找重量较小且可能使用相同衰减的替代性无毒材料的兴趣增加,而不是铅来克服其质量和毒性问题[5]。
简介 蜜蜂群落可以充当有害物质的探测器,通过高死亡率发出有毒分子存在的信号,或者在花粉、花蜜或幼虫中积累非急性致命物质(如重金属、杀菌剂和除草剂)的残留物(Celli,1983 年;Porrini 等人,2002 年)。它们于 1935 年首次被用作监测环境质量的生物指标(Crane,1984 年)。农药使用检测是蜜蜂监测应用的研究领域之一(Atkins 等人,1981 年;Celli,1983 年;Mayer 和 Lunden,1986 年;Mayer 等人,1987 年;Celli 等人,1988 年;Celli 和 Porrini,1991 年;Celli 等人,1991 年;Porrini 等人,1996 年)。由于蜂群中约四分之一的居民是活跃的觅食者,因此蜂群的状况反映了其栖息地的状态。使蜂群成为特别合适的环境指标的必要条件包括:养蜂人可以轻松饲养蜂群,觅食者可以覆盖大片区域,并且出于自身利益而收集花粉或花蜜等样本。(Celli 和 Maccagnani,2003 年)。蜜蜂群的发展取决于许多因素,包括但不限于蜂王年龄、营养、蜂群强度、病原体和寄生虫以及区域特性。因此,需要大量样本才能客观地了解蜜蜂危害的因果关系。在旨在了解蜜蜂群落崩溃原因的德国蜜蜂项目中,2004 年至 2009 年间,在全国 125 个地方监测了 1,200 多个蜂巢。这项研究揭示了许多相关性,但也留下了一些问题。作者推测,适合记录亚致死或慢性影响的研究设计可能会揭示出杀虫剂对蜂群崩溃的负面影响,而他们无法检测到这种负面影响。(Genersch 等人,2010 年)。因为使用蜜蜂作为生物指标的大规模研究非常耗时耗力,所以它们的数量仍然很少。1978 年,Giordani 等人证明了氯化烃杀虫剂硫丹的剧毒作用。然而,需要很多年的时间和几项研究才能提供足够的证据来改变对该物质的使用限制。后来,在意大利北部的一个大规模监测项目中,记录了数百个蜂巢在农业产生的高和低化学压力下的蜜蜂死亡率。通过分析伤亡人数特别多的蜂巢中的死蜂,能够确定造成 76% 已记录的大规模死亡的分子。然而,作者提到的设计的一个缺点是,收集到的死蜂数量只是一个保守估计,因为无法记录现场致死剂量造成的损失。(Celli 和 Maccagnani,2003 年)。这些研究展示了蜜蜂监测在各个领域的潜力,从农药监管到蜜蜂健康研究的普遍进展。然而,它们是先驱项目,并不代表通常的研究方式。到目前为止,因子分析和预防活动主要建立在少数蜂巢的快照数据上,这些数据可以更经济地收集。技术的使用可以帮助降低劳动强度,从而降低此类项目的成本。最近开发了一些基于不同技术的系统,但仍然存在缺陷。有些计数系统试图量化入口处的进出蜜蜂,例如带电容检测的 BeeCheck(Gombert 等人,2019 年)。由于它们的设计,计数系统只能记录短距离内的传粉者。它们的感官原始数据的信息内容大大减少,无法用成像方法进行评估。在复杂的情况下,例如蜜蜂相互踩踏或形成群体,它们很容易出现测量不准确,因此不适合对死亡率进行可靠的评估。借助视觉系统,可以通过一系列图像跟踪每只动物。第一批科学研究已经可以展示原型系统,该系统使用蜂巢入口处的摄像系统来确定寄生虫感染情况(Schurischuster 等人,2018 年)。从 2017 年到 2020 年,欧盟资助的 IoBee 项目旨在通过蜂群数据联网来确定全球蜜蜂种群的变化。该项目使用蜂巢入口处的摄像系统来确定寄生虫感染情况(Schurischuster 等人,2018 年)。从 2017 年到 2020 年,欧盟资助的 IoBee 项目旨在通过蜂群数据联网来识别全球蜜蜂种群的变化。该项目使用蜂巢入口处的摄像系统来确定寄生虫感染情况(Schurischuster 等人,2018 年)。从 2017 年到 2020 年,欧盟资助的 IoBee 项目旨在通过蜂群数据联网来识别全球蜜蜂种群的变化。