本文探讨了如何建立对电池供电无人机剩余可用飞行时间的在线预测的信任问题。本文介绍了一系列地面测试,这些测试利用电动无人机 (eUAV) 来验证剩余飞行时间预测的性能。所描述的算法验证程序是在一台功能齐全的车辆上实施的,该车辆被限制在一个平台上,用于重复运行至功能故障(电量耗尽)实验。受测车辆被命令遵循预定义的螺旋桨 RPM 曲线,以创建与飞行期间预期的电池需求曲线相似的电池需求曲线。eUAV 反复运行,直到动力系统电池中存储的电量低于指定的极限阈值。然后使用电池电量超过极限阈值的时间来测量剩余飞行时间预测的准确性。在我们之前的工作中,没有包括电池老化。在这项工作中,我们考虑了电池的老化,其中更新了参数以进行预测。当估计剩余飞行时间低于指定的极限阈值时,警报会警告操作员,这考虑到了准确性要求。
摘要:锂离子电池是一种绿色环保的储能元件,因其能量密度高、循环性能好而成为储能的首选。锂离子电池在充放电循环过程中会发生不可逆过程,造成电池容量的不断衰减,最终导致电池失效,准确的剩余使用寿命(RUL)预测技术对储能元件的安全使用和维护具有重要意义。本文综述了国内外储能元件RUL预测方法的研究进展。首先明确储能元件的失效机理,然后总结以锂离子电池为代表的储能元件RUL预测方法;其次,分析了基于卡尔曼滤波和粒子滤波的数据-模型融合方法在锂离子电池RUL预测中的应用,并讨论了储能元件RUL预测面临的问题及未来的研究展望。
摘要:起落架是飞机的重要组成部分。然而,起落架的部件在其使用寿命内容易退化,这可能导致起飞和降落时出现摆振效应。为了减少意外航班中断并提高飞机的可用性,本研究研究了预测性维护 (PdM) 技术。本文介绍了一个案例研究,该研究基于当前在役飞机的预测和健康管理 (PHM) 框架实施剩余使用寿命 (RUL) 的健康评估和预测工作流程,这可能对机队运营商和飞机维护产生重大影响。机器学习用于使用数据驱动方法开发起落架的健康指标 (HI),而时间序列分析 (TSA) 用于预测其退化。使用来自在役飞机的大量真实传感器数据评估退化模型。最后,概述了为下一代飞机实施内置 PHM 系统的挑战。
锂电池在储能中找到了广泛的应用。温度是评估锂离子电池状态的关键指标,许多实验需要用于研究目的的锂离子电池的热图像。然而,由于诸如高实验成本和相关风险之类的因素,获取锂离子电池故障的热成像样品是具有挑战性的。为了解决这个问题,我们的研究提议利用有条件的Wasserstein生成对抗网络,该网络具有梯度惩罚和残留网络(带剩余网络的CWGAN-GP),以增强描述锂离子电池故障的热图像的数据集。我们采用各种评估指标来定量分析和比较锂离子电池的热图像。随后,扩展的数据集,包括四种描述锂离子电池故障的热图像的类型的热图像,是输入基于面具区域的卷积神经网络进行训练的。结果表明,就锂离子电池的生成的热图像质量而言,提出的模型超过了传统的生成对抗网络和Wasserstein生成对抗网络。此外,数据集的增强导致基于掩模区域的卷积神经网络的故障诊断准确性提高。
如今,基于状态的维护 (CBM) [1] 是制造业越来越多地尝试采用的一种维护策略,目的是降低设备单元的生命周期成本并延长其可用性。CBM 使用实时信息通过恢复设备单元的功能特性来优化维护时机。它基于设备单元的当前健康监测,因此添加预测工具来预测未来状态和预测维护非常重要。故障预测是 CBM 的主要任务之一。它根据状态监测信息估计设备单元的 RUL。通常,预测方法可以根据所用信息的类型分为三大类。这些类别 [2]、[3] 被定义为基于物理模型的方法、数据驱动的方法和基于融合的方法。基于物理模型的方法 [4] 使用显式数学模型来表示动态系统的退化。数据驱动的方法基于状态监测,
1引用“权威”,“ OFGEM”,“我们”和“我们的”在本文档中互换使用。当局是指气和电力市场管理局Gema。天然气和电力市场办公室(OFGEM)在日常工作中支持Gema。该决定由Gema做出或代表Gema做出。2本文件是根据1989年《电力法》第49A条规定的原因的通知。3 https://www.ofgem.gov.uk/system/files/docs/2019/12/full_decision_doc_updated.pdf
更大的瀑布功能区域计划:合并报告该主题财产属于6- crestview。Crestholme区北部农村定居计划和草案计划。该计划是由于没有土地使用计划的研究区域而开发的。该区域也被认为是一个主要是农村住宅和小型居住区,与相关的小规模耕作活动,主要是较高的密度,自由居住的住宅特性,具有马术设施和在单个特性上的马s的存在。有几种空缺特性,所有者打算细分并创建更高的密度居民区。考虑到该地区的当前特征,其对生活方式区域和娱乐活动的贡献,该地区位于城市发展线以外的事实。
本论文由默里州立大学数字共享中心的学生作品免费开放给您。默里州立大学数字共享中心的授权管理员已接受本论文,将其纳入荣誉学院论文。如需更多信息,请联系 msu.digitalcommons@murraystate.edu 。
Dutch Boy Landscaping & Paving Daniel Stanislaw 3800 Sterling Hwy Homer AK 99603 907-299-7018 danny@alaskahardy.com
这个数字时代最关键的要求之一是数据安全。现在几天的数据使用次数急剧增加,但是确保数据是非常大的问题,尽管我们有足够的加密算法来确保实时应用程序,但是尚未确定针对现代攻击的安全性水平。基于椭圆曲线的加密术(ECC)是机密性和身份验证的最重要的加密算法,与其他不对称算法(如RSA,Diffie-Hellman等)相比,用较小的长度键提供了较高的安全水平。由于计算复杂性,ECC的实时系统使用量很小。因此,为了增加实时系统的使用情况,我们提出了将ECC与中国剩余定理(CRT)相结合的新方法,以将较大的值降低到较小的值,以便与现有的基于ECC的算法相比,构建ECC点的复杂性可以降低接近40%。此外,它证明了安全级别的提高,可以用作实时通信系统中的基本组件。