1。Hon'ble女士Prathiba M. Singh女士,德里高等法院法官2。促进行业和内部贸易的部门(DPIIT):i。 Himani Pande女士,DPIIT II联合秘书长。Shri Karan Thapar,DPIIT III主任。DPIII高级顾问G. R. Raghavendra博士,版权所有前注册官,法律与司法部前联合秘书3。教授(博士)N。S. Gopalakrishnan,科钦科学技术大学INTR大学IPR研究中心前主任兼名誉教授4. 印度大学法学院法学院副教授Arul George Scaria博士,班加罗尔5。 钦奈法学院助理教授塔尼亚·塞巴斯蒂安(Tania Sebastian)博士6。 科钦大学科钦大学工程学院IPR的客座教师Naveen Gopal博士(2023年9月 * 2024年1月)7。 印度的商业和商业室(Assocham):i。 Shri Santosh Parashar,法律与监管事务公司事务主管兼鼻子官,Assocham II。 Shri Venkat Rao,Intygrat法律为ASSOCHAM III的法律与监管事务委员会成员。 Shri Dev Robinson,国家实践主管-IPR,Shardul Amarchand Mangaldas&Co。IV。 Gautami Seth女士,Assocham诉Shri Rajinder Kumar国家法律与监管事务委员会成员教授(博士)N。S. Gopalakrishnan,科钦科学技术大学INTR大学IPR研究中心前主任兼名誉教授4.印度大学法学院法学院副教授Arul George Scaria博士,班加罗尔5。 钦奈法学院助理教授塔尼亚·塞巴斯蒂安(Tania Sebastian)博士6。 科钦大学科钦大学工程学院IPR的客座教师Naveen Gopal博士(2023年9月 * 2024年1月)7。 印度的商业和商业室(Assocham):i。 Shri Santosh Parashar,法律与监管事务公司事务主管兼鼻子官,Assocham II。 Shri Venkat Rao,Intygrat法律为ASSOCHAM III的法律与监管事务委员会成员。 Shri Dev Robinson,国家实践主管-IPR,Shardul Amarchand Mangaldas&Co。IV。 Gautami Seth女士,Assocham诉Shri Rajinder Kumar国家法律与监管事务委员会成员印度大学法学院法学院副教授Arul George Scaria博士,班加罗尔5。钦奈法学院助理教授塔尼亚·塞巴斯蒂安(Tania Sebastian)博士6。科钦大学科钦大学工程学院IPR的客座教师Naveen Gopal博士(2023年9月 * 2024年1月)7。印度的商业和商业室(Assocham):i。 Shri Santosh Parashar,法律与监管事务公司事务主管兼鼻子官,Assocham II。Shri Venkat Rao,Intygrat法律为ASSOCHAM III的法律与监管事务委员会成员。Shri Dev Robinson,国家实践主管-IPR,Shardul Amarchand Mangaldas&Co。IV。Gautami Seth女士,Assocham诉Shri Rajinder Kumar国家法律与监管事务委员会成员
抽象目的:证明在瓣膜闭合期间预测的血剪力与血栓形成性之间的明确联系,这解释了组织和机械阀之间的血栓形成差异,并提供了一种实用的度量,以开发和完善假体瓣膜设计,以降低血栓形成性。方法:使用脉冲和准稳态流系统进行测试。使用校准预测参考孔口区域的模拟光电电子学测量了预计开放区域(POA)的时间变化。在心脏周期上确定的流速度等于瞬时体积流量除以POA。在闭合阀间隔中,确定并用于性能分析,用于准稳态的背压/流程测试的阀泄漏的等效POA。通过推断的速度梯度(剪切)(剪切)的最大负阴性和正闭合流速度排名的性能。测试了临床,原型和对照阀。结果:多个测试数据集的血液剪切和凝块潜力指导经验优化和阀设计的比较。评估用于软闭合的3D印刷原型阀设计(BV3D)表明了降低血栓形成性的潜力。
缩写:ADPKD,常染色体显性多囊肾病;BB-FCF,亮蓝-FCF;CCD,皮质集合管;COX-2,环氧合酶-2;CX30,连接蛋白-30;CX30.3,连接蛋白-30.3;CX37,连接蛋白-37;DCPIB,4-(2-丁基-6,7-二氯-2-环戊基-茚满-1-酮-5-基)氧代丁酸;DCT,远曲小管;DTT,二硫苏糖醇;ENaC,上皮钠通道;GFR,肾小球滤过率;Gjb4 -/-,Gjb4 敲除;IMCD,内髓集合管;LRRC8,含 8 个富亮氨酸重复序列;Na +,钠;PBS,磷酸盐缓冲溶液; PC1,多囊蛋白-1;PC2,多囊蛋白-2;Pkd1 -/-,Pkd1 敲除;SDS,十二烷基硫酸钠;sgRNA,单向导 RNA;TBS,三羟甲基氨基甲烷缓冲溶液;TGF,管球反馈;UDP,尿苷二磷酸;VNUT,囊泡核苷酸转运蛋白;VRAC,容量调节阴离子通道;WT,野生型。
库以相等的摩尔方式合并,并使用具有85 pm加载浓度的单个SMRT®细胞在续集®IIE系统上进行测序。QC和测序结果(图3-4,表2)表明1,400 rpm速度设置产生了最佳的HIFI读取长度轮廓。剪切240秒产生的平均HIFI读取长度为17,703 bp,而剪切480秒的平均读数为16,855 bp的平均读取长度。在240和480秒时,更快的1,800 rpm设置覆盖了DNA,导致平均HIFI读取长度分别为13,184 bp和11,658 bp。通常,当使用FastPrep-96剪切DNA时,较小的工作速度较小的时间将导致较大的平均片段长度。
抽象目的:证明在瓣膜闭合期间预测的血剪力与血栓形成性之间的明确联系,这解释了组织和机械阀之间的血栓形成差异,并提供了一种实用的度量,以开发和完善假体瓣膜设计,以降低血栓形成性。方法:使用脉冲和准稳态流系统进行测试。使用校准预测的参考孔口区域的模拟光电电子学测量了预计开放阀区域(POVA)的时间变化。在心脏周期上确定的流速度等于瞬时体积流速除以POVA。对于闭合阀间隔,获得了准稳态的背压/流动测试的数据。性能通过得出的最大负和正闭合流速度排名,通过推断的速度梯度(剪切)证明潜在的临床血栓形成性。测试了临床,原型和对照阀。结果:多个测试数据集的血液剪切和凝块潜力指导经验优化和阀设计的比较。评估了用于软闭合和减少血栓形成电位的3-D打印原型阀设计(BV3D)。结论:在瓣膜闭合处的传单几何形状,流速和预测的剪切之间的关系,照亮了假体瓣膜血栓形成的重要来源。对这种关系表示赞赏,并基于我们的实验产生了比较数据,我们实现了瓣膜原型的优化,具有降低的血栓形成性。竞争利益:没有声明。财务披露:这项研究都是所有作者都在无偿的基础上进行的。关键词:假肢;实验室模拟;预计的开放阀区;瓣膜闭合,血栓形成;阀流速;反弹中央消息是阀门关闭流速的衍生实验室指标,提供了一种对阀门模型进行潜在血液损伤的方法。这些结果为先前的临床观察提供了新的见解和机理解释,在该观察中,主动脉和二尖瓣替代物的替代方案的血栓形成潜力和抗凝需求有所不同。这项研究提出了设计和评估新型机械阀模型的前进道路,以进行未来的开发。作为对机械和生物假体瓣膜的多次修改尚未解决与血栓形成和耐用性有关的慢性缺点,因此需要一个新的开发途径,以消除前者的血栓形成,并在后者中延长耐用性。透视假肢机械阀装置会导致血细胞损害。激活凝血级联反应是通过动态阀函数引发的。设计以关注阀门行为为重点的创新可能会降低瓣膜血栓形成潜力。我们的研究表明,阀门设计可以在经验上优化,重点是该阶段。对开放气门性能的重要性重点鼓励了长期存在的偏见,而对识别潜在血栓形成并发症至关重要的闭合相位持续存在。我们的多个数据集可用于挑战这种偏见。本研究比较了三个临床瓣膜和两个实验原型。机械阀的动态运动和衍生的区域流速受到阀几何形状的影响。关注瓣膜闭合动力学可能导致潜在的血栓形成原型阀的发展。实验室实验支持阀区域流速与瓣膜血栓形成潜力有关的假设。
本研究专门研究基于空心缸检验的细砂的膨胀行为。培养基和致密样品以恒定的平均应力测试,通过将扭转角度施加剪切菌株= 1、2、3和4%。膨胀曲线以及剪切波速度测量值,以研究并讨论剪切模量降解曲线中剪切应变振幅的影响。测量的应力和应变路径被用来比较四个高级本构模型的性能,尤其是在描述沙子的膨胀行为时。从其本构方程的角度来看,检查了具有各种材料模型的模拟之间的差异。可以得出结论,只要确保对材料参数的适当校准,所有四个模型都可以正确预测扭转剪切测试。关键字:扭转剪切测试;构成模型;压力降低;剪切模量降解
摘要级别的血液学是对血流以及所涉及的机械应力和运动学的研究。卡森本构方程是一种流行而简单的模型,用于描述血液的稳定剪切流变性,只有两个参数指定了无限的剪切粘度和取决于血液生理学的屈服应力。以前的文献已经将血细胞比容和纤维蛋白原浓度确定为影响血流的两个最重要的生理因素,但是由于使用了非标准化的数据集,卡森模型的先前参数化可能并不可靠。本研究使用机器学习和最大的标准化数据集来改善卡森模型在健康个体的血细胞比容和纤维蛋白原浓度方面的参数化。该研究还采用机器学习来识别可能影响血液流变学的潜在额外因素,即平均肌张力性血红蛋白(MCH)。所提出的方法证明了机器学习的潜力,以改善生理学和血液流变学之间的联系,并在心血管诊断中产生可能的影响。
摘要:用传统质谱法分析核酸时,反离子会造成质量不均匀,限制可分析的 DNA 大小,因此分析起来十分复杂。在这项研究中,我们使用电荷检测质谱法分析兆道尔顿大小的 DNA,从而克服了这一限制。使用正模式电喷雾,我们发现 DNA 质粒的电荷分布截然不同。低电荷群体的电荷像紧凑的 DNA 折纸一样,而高电荷群体的电荷分布范围很广。对于高电荷群体,测量质量与 DNA 序列预期质量之间的偏差始终在 1% 左右。对于低电荷群体,偏差更大且变化更大。高电荷群体归因于随机卷曲配置中的超螺旋质粒,其宽电荷分布是由随机卷曲可以采用的丰富多样的几何形状造成的。高分辨率测量表明,随着电荷的增加,质量分布会略微向低质量方向移动。低电荷群体归因于质粒的浓缩形式。我们认为凝聚形式是由熵捕获引起的,其中随机线圈必须经历几何变化才能挤过泰勒锥并进入电喷雾液滴。对于较大的质粒,剪切(机械破碎)发生在电喷雾期间或电喷雾界面。降低盐浓度可以减少剪切。■简介质谱 (MS) 在核酸表征中发挥着重要作用。1、2 电喷雾和基质辅助激光解吸/电离 (MALDI) 都已用于将 DNA 和 RNA 离子引入气相进行分析,但 MALDI 与飞行时间 (TOF) MS 的组合应用最为广泛。例如,MALDI-TOF 继续用于表征单核苷酸多态性 (SNP),这可提供有关疾病易感性遗传特征的重要信息。对于突变和 SNP 的分析,只需要分析小于 25 nt 的小寡核苷酸(核苷酸)。这是幸运的,因为反离子(通常是 Na +、K + 或 Mg 2+)与 DNA 和 RNA 的高电荷磷酸骨架结合,导致峰宽和灵敏度降低。已经开发出几种方法来脱盐核酸。3、4 然而,由金属离子加合引起的异质性会随着尺寸的增加而增加,并且由于电荷状态分辨率的丧失,常规 MS 不再可能分析兆道尔顿大小的 DNA 和 RNA 物种。另一方面,新型疫苗和基因疗法等新兴疗法携带着大量的遗传物质。基因组完整性对于有效的治疗是必不可少的,对完整基因组的质量测量提供了一种快速而直接的方法来检查缺失和添加。5
抽象在临床上严重的先天性心脏瓣膜缺陷是由于不当生长和对传单中的心内膜垫子的重塑而产生的。遗传突变已经进行了广泛的研究,但解释了不到20%的病例。通过跳动心脏产生的机械力驱动瓣膜开发,但是这些力如何共同确定阀生长和重塑,仍然是全面了解的。在这里,我们将这些力对阀尺寸和形状的影响解散,并研究YAP途径在确定大小和形状中的作用。低振荡性剪切应力促进瓣膜内皮细胞(VEC)的YAP核易位,而高单向剪切应力限制了细胞质中的YAP。瓣膜间质细胞(VIC)中的静水压缩应力激活的YAP,而拉伸应力停用的YAP。yap激活促进了VIC增殖并增加了瓣膜大小。虽然YAP抑制增强了VEC和受影响瓣膜形状的细胞细胞粘附的表达。最后,在雏鸡胚胎心脏中进行左心房连接,以操纵体内剪切和静水压力。左心室中的受限流动引起的球状和不塑性的左室(AV)阀具有抑制YAP表达。相比之下,持续YAP表达的右AV阀正常增长和细长。这项研究建立了一个简单而优雅的机械生物学系统,通过该系统的转导局部应力调节瓣膜的生长和重塑。该系统将传单带入室发育的适当尺寸和形状,而无需使用遗传规定的时序机制。