穿透金属装甲的射弹会使材料处于复杂的应力状态,从而导致装甲失效。金属装甲可能发生多种类型的失效(Backman 和 Godsmith,1978 年),但许多研究都集中于剪切塞失效机制,这是导致装甲钢的抗弹性能降低的原因。剪切塞被归类为低能量失效,通常由钝头射弹或钝碎片的撞击引起(Cimpoeru,2016 年)。对装甲钢目标进行的许多微观结构观察表明目标内部存在绝热剪切带(Solberg 等人,2007 年)。通常,如果存在高应变率载荷下局部塑性变形的有利条件,则可能发生绝热剪切。当冲击引起的变形发生得如此之快,以致热软化超过目标材料的加工和应变速率硬化时,变形将局限于强烈剪切的狭窄区域,即绝热剪切带 (ASB)。根据研究 (Guo et al ., 2020),ASB 的形成步骤如下:应力崩塌、应变局部化、温度升高、剪切带起始和裂纹形成。给定材料中存在 ASB 的必要条件是发生热机械不稳定性,表现为塑性流动应力随变形值的增加而降低。
摘要:位于奥地利蒂罗尔州奥兹山谷的 Köfels 岩质滑坡是阿尔卑斯山脉变质岩体中已知的最大的超快速滑坡。尽管过去对此次滑坡的触发因素提出了许多假设,但迄今为止尚未发现任何经过科学验证的触发因素。本研究提供了有关(i)破坏前和破坏地形、(ii)滑坡体的破坏体积和孔隙率,以及(iii)初始变形和破坏机制的数值模型以及通过反算获得的基底剪切带的剪切强度特性的新数据。地理信息系统 (GIS) 方法被用于重建滑坡前、滑坡中和滑坡后的斜坡地形。通过比较生成的数字地形模型,可以估计破坏体和沉积体的体积分别为 31 亿和 40 亿立方米,滑坡体的孔隙率为 26 %。对于 2D 数值研究,采用离散元法研究初始破坏过程(即没有基底剪切带的模型运行)的地质力学特性,并确定重建的基底剪切带的抗剪强度特性。通过改变块体和节理输入参数进行多次模型运行,可以合理地重建岩石斜坡的破坏过程;然而,岩石滑坡的确切几何形状,尤其是厚度,无法完全再现。我们的结果表明
我们利用锡罗斯岛(希腊基克拉泽斯群岛)出露的俯冲相关岩石的结构和微观结构观测结果,对深俯冲界面的长度尺度和异质性类型提供约束,可能对间歇性震颤和慢滑移有影响。我们选择了三个锡罗斯地区,它们代表了俯冲界面剪切带内不同的海洋原岩和变形条件,包括:(1)海洋地壳向榴辉岩相的顺向俯冲;(2)海洋地壳从榴辉岩经蓝片岩-绿片岩相折返;(3)混合镁铁质地壳和沉积物从榴辉岩经蓝片岩-绿片岩相折返。这三个地方都保留了流变学异质性,反映了俯冲原岩中原始岩性、地球化学和/或结构变化的变质,并以粘性基质内的脆性荚状物和透镜状物的形式出现。微观结构观察表明,基质岩性(蓝片岩和富含石英的变质沉积物)由分布式幂律粘性流变形,并由多个矿物相中的位错蠕变所适应。我们估计整体剪切带粘度范围从~10 18 到 10 20 Pa-s,取决于沉积物与(部分榴辉岩化的)海洋地壳的相对比例。基质内的榴辉岩和粗粒蓝片岩异质性保留了多代扩张剪切断裂
已经开发出一种新颖的建模能力,允许在热机械成型分析中考虑金属微观结构的演变。具体而言,使用大变形晶体塑性模型预测微观结构特征(例如晶体纹理和晶粒本构响应)的演变。这与商业有限元软件 LS-DYNA 中最先进的重新网格化/自适应能力相结合。通过允许重新网格化并将微观结构特征正确地重新映射到新网格,建模框架能够模拟比传统晶体塑性有限元大得多的局部变形(大于 900% 应变)。因此,开发的模型允许模拟锻造等大变形成型操作,产生的输出包括最终微观结构以及剪切带定位和局部损伤外观的分析。该模型已经过校准,并成功应用于将 Al-Li 2070(风扇叶片材料)高温锻造成复杂几何形状。该模型的通用性质使其可以进一步应用于广泛的热机械成型工艺和材料系统。
摘要:高级孔隙形态 (APM) 泡沫元件几乎是球形的泡沫元件,具有坚固的外壳和多孔的内部结构,主要用于压缩载荷应用。为了确定内部结构的变形及其在压缩过程中的变化与其机械响应之间的关系,进行了原位时间分辨 X 射线计算机微断层扫描实验,其中在加载过程中对 APM 泡沫元件进行 3D 扫描。当机械响应与样品的内部变形相关时,同时施加机械载荷和射线成像使人们对 APM 泡沫样品的变形行为有了新的认识。研究发现,在出现第一个剪切带之前,APM 元件的刚度达到最高。在此之后,APM 元件的刚度降低,直到内部孔壁之间第一次自接触为止,从而使样品刚度朝向致密化区域增加。
1) 坎顿附近的“蛇形”路堑,一种塑性折叠、弱叶理的大理岩,具有薄而持久的类似折叠的层,主要由微斜长石组成;2) 古弗内尔附近的岩岛路堑,暴露出格伦维尔大理岩中波茨坦砂岩的空腔填充物,一种粗面岩(?)侵入大理岩的杏仁状堤坝,片麻岩和片岩中的复杂角砾岩化,众多剪切带和黄铁矿矿化;3) 和 4) 布拉西角附近的海德“晶石”,将强调次要结构和主要结构之间的关系,并讨论晶石起源的有争议的问题;5) 海尔斯伯勒路堑,暴露出塑性变形的大理岩,其中含有显然来自堤坝的辉长岩块; 6) 石英黑云母 - 长石片麻岩中的 Poplar Hill 混合岩路堑,是该地区 Grenville 最广泛的变质沉积岩类型之一;7) Edwards 路堑,是著名的透辉石、方解石、金云母、钾长石和磷灰石矿物收集地。
Omai 金矿区由中温脉金矿化和相关的腐泥土冲积砂矿组成,赋存于圭亚那地盾的古元古代花岗岩-绿岩地形中。总采矿储量估计为 4480 万吨,品位为 1.43 glt Au。该金矿区位于东南东向的区域规模结构上,称为 Issano-Appaparu 剪切带。在 Omai,金矿床位于两个独立的矿区 - Omai Stock 区和 Wenot Lake 区。大部分原生矿化集中在高 AI、石英闪长岩-长花岗岩凸起(Omai Stock)上,其中围岩蚀变以热液绢云母-碳酸盐组合为主。原生矿石包 Au-W-Te-S 矿化包含在一系列狭窄(1-5 厘米)的石英碳酸盐(铁白云石)脉中。可见金通常与方铅矿和微观碲化物有关。临时流体包裹体研究表明,母热液含 H 2 0-C0 2 (- 5.0 mol% CO 2 ),盐度低 (0-1.8 wt. % NaCI 当量),密度适中 (0.96 g/cm 3 )。流体的沉积温度可能在 200-400oC 左右。初步的 6'80 值与岩浆和/或变质源一致。
工程结构中使用的粒状材料在不同的岩土因素下往往会发生拱形。拱形是这些结构中载荷从破坏区转移到稳定区域的一个因素。土拱在隧道施工中应力重新分布、沉降和支撑载荷方面起着重要作用。本文回顾了各种参数对土拱发展和隧道周围膨胀和收缩区形成的影响。进行了全面的文献综述、新发表论文分析和调查,以研究各种参数对土拱的影响。通过研究剪切带、变形区的形成及其发展获得了结果。调查结果表明,沙地隧道周围的土拱和地面变形是复杂的现象,在隧道施工期间需要仔细考虑。此外,结果还表明,尽管存在拱形区,但在隧道上方仍形成了一个具有非线性滑动面的松动区。随着隧道收敛的开始,出现初始非线性滑动面,并在隧道上方形成拱形区。当隧道收敛增加时,拱区内会形成稳定拱,稳定拱下会形成一个松动区,即应力减小区。了解沙地隧道周围拱区内形成的土拱、地面变形和稳定拱对于评估隧道支撑上的应力重新分布和负载的工程师非常重要。了解这些问题还可以帮助设计师和从业者在隧道施工期间做出明智的决策。
索引 1.征集规则 ...................................................................................................................................... 6 2.每个 SPD 的主题数量和总指示性资金价值概览 ........................................................................ 7 3.主题摘要列表 ...................................................................................................................... 8 4.洁净天空 2 – 大型客机 IAPD ............................................................................................. 12 I.可靠且轻质的动力变速箱行星轴承的创新设计 ............................................................. 12 II.ALM 的下一代低压涡轮翼型 ............................................................................. 18 III.先进的发动机舱空气动力学优化 ............................................................................................. 24 IV.真实飞机的皮肤摩擦测量和基于光纤的飞机应用压力测量 ............................................................................................................................. 29 V. 嵌入式永磁机器的新型机械驱动断开装置 ............................................................................................. 35 VI.用于航空航天应用的 MW 级功率密集型电机的先进制造 ............................................................................................. 39 VII.开发用于 >1kV 航空航天应用的电力电子技术 .................................................................................. 43 VIII.脉动热管 (PHP) 建模和特性 ............................................................................................. 49 IX.快速断开系统 ............................................................................................................. 54 X.高性能发电通道集成 ............................................................................................. 59 XI.智能功率模块 ............................................................................................................. 65 XII.开发机身纵向和环向接头全尺寸自动化工厂系统 ...................................................................................................................................... 71 XIII.FMS 的创新验证方法和工具 ...................................................................................................... 88 5.设计和开发可在驾驶舱环境中实施的用于检测人类认知状态的智能传感器 ............................................................................................................. 82 XIV.洁净天空 2 – 区域飞机 IADP ............................................................................................................. 95 I.用于区域飞机机身筒地面演示器的全尺寸创新复合材料框架和剪切带 ............................................................................................................. 95 II.用于区域飞机机身筒地面演示器的全尺寸创新复合材料门、周围和子结构 ............................................................................................................. 104 III.用于区域飞机机身筒地面演示器的全尺寸创新复合材料窗框 ............................................................................................................................. 113 IV.区域飞机机身筒体地面演示器全尺寸创新复合材料乘客和货物地板网格 ................................................................................................................................ 123 V. 区域空调创新型一次和二次配电网络 ...................................................................................................................... 134 VI.主结构和大尺寸部件增材制造在操作层面的技术准备情况 ............................................................................................................. 141 6.清洁天空 2 – 快速旋翼机 IADP.................................................................................................................... 149 I.民用倾转旋翼机全尺寸高速空气动力学特性 ............................................................................................. 149 II.倾转旋翼机创新浮选方法(系统) ............................................................................................. 156