图 1:HPV 阳性和 HPV 阴性癌症患者第一疗程治疗后的临床结果比较。(b)饼图显示 HPV 阳性和 HPV 阴性癌症患者第一疗程治疗后的生命体征。(c)癌症样本中 HPV 亚型的频率。颜色显示 HPV 病毒 DNA 整合到宿主基因组中的样本的分布。(d)患有 HPV 阳性宫颈癌的患者不同年龄段肿瘤的 HPV 亚型分布。(e)在 HPV 阳性癌症中测量的标准化 E6 剪接 mRNA 转录本和标准化 E6 未剪接 mRNA 转录本之间的 Pearson 线性相关性。针对 HPV 亚型 18 和 16 分别绘制了回归线。标记形状显示基于主要 HPV 病毒 DNA 整合到宿主基因组的标记。 (f)E6 未剪接标准化计数 e6 与 E6 剪接标准化计数。颜色显示有关 HPV 亚型的详细信息。标记大小显示受感染患者总生存期(以月为单位)的详细信息。标记标有总生存期。
近膜 (JX) 结构域,其中包含 PKC 磷酸化位点 (S985)、胱天蛋白酶切割位点 (D1002) 和 E3 泛素连接酶 CBL (Casitas-B 系淋巴瘤) 对接位点 (Y1003),均控制 RTK 活性的下调 (图 1a)。3–7 这种改变破坏了外显子 14 两侧的内含子剪接位点,包括内含子 13 的剪接受体位点和内含子 14 的剪接供体位点,或外显子 14 编码序列本身内的突变,都会导致外显子 14 在转录本中跳跃。这些突变中最常见的是碱基替换,其次是插入/缺失。因此,导致MET外显子14跳跃的可变剪接事件会激活MET-HGF通路,促进肿瘤细胞增殖、迁移,并阻止细胞凋亡(图1b)。
发育突触重塑对于形成精确的神经回路很重要,并且其破坏与自闭症和精神分裂症等神经发育障碍有关。小胶质细胞修剪突触,但这种突触修剪与重叠和并发神经发育过程的整合仍然难以捉摸。粘附G蛋白偶联受体ADGRG 1 / GPR 56以细胞类型的方式控制脑发育的多个方面:在神经祖细胞中,GPR 56调节皮质层压层,而在少突甘胶祖细胞细胞中,GPR 56在GPR 56中控制发育的骨髓和肌蛋白。在这里,我们表明小胶质细胞GPR 56以时间和电路依赖性方式在几个大脑区域保持适当的突触数。磷脂酰丝氨酸(PS)在突触前元素上以域特异性方式结合GPR 56,而GPR 56的小胶质细胞特异性缺失导致突触增加,这是由于PS + PES +突触前输入的小胶质细胞吞吐量降低而导致的。非常明显,小胶质细胞介导的突触修剪需要特定的GPR 56的剪接同工型。我们的目前数据在复杂的神经发育过程的背景下提供了小胶质细胞GPR 56介导的突触修剪的配体和同工型特定机制。
1 ProMetTre 癌症研究中心,墨尔本 3205,澳大利亚 2 维多利亚大学健康与生物医学学院,墨尔本 8001,澳大利亚;jack.bolton86@gmail.com(JB);john.price@vu.edu.au(JTP);chau.nguyen@icmp.int(CHN) 3 哈佛医学院贝斯以色列女执事医疗中心放射肿瘤科,波士顿,马萨诸塞州 02215,美国;bjlang617@gmail.com(BJL);scalderw@bidmc.harvard.edu(SKC) 4 库约医学与实验生物学研究所(IMBECU)肿瘤学实验室,国家科学技术研究委员会(CONICET),门多萨 5500,阿根廷;martine.guerrero@iqvia.com 5 西部医院 Dorevitch 病理学系,墨尔本 3011,澳大利亚; chris.dow@dorevitch.com.au 6 墨尔本大学医学系,墨尔本 3052,澳大利亚 7 维多利亚大学健康与体育研究所,墨尔本 8001,澳大利亚 8 维多利亚大学与西部健康学院澳大利亚肌肉骨骼科学研究所 (AIMSS),墨尔本 8001,澳大利亚 9 莫纳什大学生物化学与分子生物学系,克莱顿 3800,澳大利亚 * 通讯地址:jdrake@pmtcr.org;电话:+61-425-031-798 † 上述作者对本文贡献相同。‡ 作者目前所属机构:国际失踪人员委员会科学与技术部,2514 AA,海牙,荷兰。
a Department of Genetics, The Life Sciences Institute, The Hebrew University, Jerusalem, Israel b SpliSense Therapeutics, Jerusalem, Givat Ram, Israel c Institut Necker Enfants Malades, INSERM U1151 Université de Paris, Faculté de Médecine Necker, Paris, France d Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama在伯明翰,伯明翰,伯明翰,美利坚合众国E埃默里大学,埃默里大学,亚特兰大,佐治亚州亚特兰大,美利坚合众国,小儿肺部和睡眠单位,儿科部,哈达萨·希伯鲁大学医学中心,耶路撒冷,耶路撒冷,以色列G中心,以色列G分子医学,澳大利亚梅尔多克大学,澳大利亚,澳大利亚,澳大利亚,澳大利亚,梅尔多克大学 University of Western Australia, Nedlands, Western Australia, Australia i Hadassah-Hebrew University Medical Center, Department of Pediatrics and Cystic Fibrosis Center, Jerusalem, Israel j Cystic Fibrosis Center, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France k Université de Paris, France l European Reference Network Lung
全基因组关联研究 (GWAS) 可以识别与性状相关的基因座,但识别致病基因可能是一个瓶颈,部分原因是连锁不平衡 (LD) 衰减缓慢。全转录组关联研究 (TWAS) 通过识别基因表达-表型关联或将基因表达数量性状基因座与 GWAS 结果整合来解决这一问题。在这里,我们使用自花授粉大豆 (Glycine max [L.] Merr.) 作为模型来评估 TWAS 在 LD 衰减缓慢的植物物种性状遗传解析中的应用。我们为大豆多样性面板生成了 RNA 测序数据,并识别了 29 286 个大豆基因的遗传表达调控。不同的 TWAS 解决方案受 LD 的影响较小,并且对表达源具有稳健性,可以识别与来自不同组织和发育阶段的性状相关的已知基因。通过 TWAS 鉴定出新的豆荚颜色基因 L2,并通过基因组编辑对其进行了功能验证。通过引入新的外显子比例特征,我们显著提高了由结构变异和可变剪接导致的表达变异的检测。因此,通过我们的 TWAS 方法鉴定出的基因表现出多种多样的因果变异,包括 SNP、插入或缺失、基因融合、拷贝数变异和可变剪接。使用这种方法,我们鉴定出与开花时间相关的基因,包括以前已知的基因和以前未与此特性关联的新基因,从而为 GWAS 的见解提供了补充。总之,这项研究支持将 TWAS 应用于 LD 衰减率较低的物种的候选基因鉴定。
RNA结合蛋白TDP-43的抽象核清除率和细胞质积累是几乎所有肌萎缩性侧面硬化症患者(ALS)的病理标志,高达50%的额叶痴呆(FTD)患者和阿尔茨海默氏病。在阿尔茨海默氏病中,TDP-43病理在边缘系统中主要观察到,并且与认知能力下降和海马体积减少有关。核TDP-43功能的破坏会导致RNA剪接异常,并在许多转录本中掺入错误的隐性外显子,包括Stathmin-2(STMN2,也称为SCG10)和UNC13A,最近在ALS和FTD患者的组织中报道了UNC13A。在这里,我们在阿尔茨海默氏病患者中识别STMN2和UNC13A隐秘外显子,与TDP-43病理负担相关,但与淀粉样蛋白β或TAU沉积物无关。我们还证明,与UNC13A相比,STMN2前MRNA的处理对TDP-43功能丧失更敏感。此外,编码STMN2和UNC13A的全长RNA被抑制在由阿尔茨海默氏病后验尸脑组织产生的大型RNA-seq数据集中。共同开放了令人兴奋的新途径,将使用STMN2和UNC13A用作具有TDP-43蛋白质病(包括阿尔茨海默氏病)的广泛神经退行性疾病的潜在治疗靶标。
Keenan Ikking(马萨诸塞州2号,口头)完成了他的本科生和荣誉学位,目前正在Witwatersrand大学攻读硕士学位。 他的研究着重于替代剪接,使用长阅读测序研究RNA同工型多样性。 与传统方法相比,这种方法在理解基因变异方面有更大的细节。 他也对先天免疫系统,尤其是Rig-I等途径以及它们对病毒感染的反应感兴趣。 他的工作通过替代剪接探讨了这些途径的调节,重点是潜在的治疗靶标,尤其是与Covid-19这样的疾病有关。 基南的跨学科研究结合了计算生物学和基因组学,有助于个性化医学和免疫系统研究的进步。Keenan Ikking(马萨诸塞州2号,口头)完成了他的本科生和荣誉学位,目前正在Witwatersrand大学攻读硕士学位。他的研究着重于替代剪接,使用长阅读测序研究RNA同工型多样性。与传统方法相比,这种方法在理解基因变异方面有更大的细节。他也对先天免疫系统,尤其是Rig-I等途径以及它们对病毒感染的反应感兴趣。他的工作通过替代剪接探讨了这些途径的调节,重点是潜在的治疗靶标,尤其是与Covid-19这样的疾病有关。基南的跨学科研究结合了计算生物学和基因组学,有助于个性化医学和免疫系统研究的进步。
1 Harrison PJ,Tunbridge EM,Dolphin AC,Hall J. Hall J.电压门控钙通道阻滞剂用于精神疾病:基因组重新评估。英国精神病学杂志。2020; 216(5):250-53。2 Striessnig J,Pinggera A,Kaur G,Bock G,Tuluc P. L型Ca2+心脏和大脑中的通道。Wiley跨学科评论:膜运输和信号传导。2014; 3(2):15-38。 3 Soldatov,N。M.,Bouron,A.,Reuter,H。二氢吡啶对人Ca2+通道剪接变体的不同电压依赖性抑制作用。 生物学杂志,1995; 270(18):10540–10543。 4 Mazin PV,Khaitovich P,Cardoso-Moreira M,Kaessmann H.哺乳动物器官开发过程中的替代剪接。 自然遗传学。 2021; 53(6):925-34。 5 Clark MB,WRZesinski T,Garcia AB,Hall Nal,Kleinman JE,Hyde T等。 长阅读测序揭示了人脑中精神危险基因CACNA1C的复杂剪接曲线。 分子精神病学。 2020; 25(1):37-47。 6 Jaffe AE,Straub RE,Shin JH,Tao R,Gao Y,Collado-Torres L等。 人皮层转录组的发育和遗传调节阐明了精神分裂症的发病机理。 自然神经科学。 2018; 21(8):1117-25。2014; 3(2):15-38。3 Soldatov,N。M.,Bouron,A.,Reuter,H。二氢吡啶对人Ca2+通道剪接变体的不同电压依赖性抑制作用。生物学杂志,1995; 270(18):10540–10543。4 Mazin PV,Khaitovich P,Cardoso-Moreira M,Kaessmann H.哺乳动物器官开发过程中的替代剪接。自然遗传学。2021; 53(6):925-34。5 Clark MB,WRZesinski T,Garcia AB,Hall Nal,Kleinman JE,Hyde T等。长阅读测序揭示了人脑中精神危险基因CACNA1C的复杂剪接曲线。分子精神病学。2020; 25(1):37-47。6 Jaffe AE,Straub RE,Shin JH,Tao R,Gao Y,Collado-Torres L等。人皮层转录组的发育和遗传调节阐明了精神分裂症的发病机理。自然神经科学。2018; 21(8):1117-25。2018; 21(8):1117-25。
伪exon是非功能性内含子序列,可以通过深内核序列变化激活。激活中的伪exon包含在mRNA中,并干扰了正常的基因表达。PCCA C.1285-1416A> g变化激活伪exon,并通过在PCCA和PCCB中编码的丙酰基-COA羧化酶酶的指示引起严重的代谢性毒性酸血症。我们详细介绍了这种致病性伪exon活化事件,并确定HNRNP A1对于正常代表很重要。PCCA C.1285-1416A> g变化破坏了HNRNP A1结合剪接消音器,并同时创建剪接增强器。我们证明,通过剪接切换的反义寡核苷酸阻止这种调节区域可恢复正常的剪接,并挽救患者纤维细胞中的酶活性,并在由CRISPR基因创建的细胞模型中恢复了酶活性。有趣的是,PCCA伪exon具有上调基因表达的未插入潜力,因为健康组织显示出相对较高的纳入水平。通过阻止未激活的野生型假exon的包含,我们可以同时增加PCCA和PCCB蛋白水平,从而增加了异二次运动酶的活性。令人惊讶的是,我们可以从具有PCCA错义变体的患者纤维细胞中的残留水平中吸收酶活性,而且还可以从具有PCCB错过变体的患者中进行酶活性。这是丙酸血症的潜在治疗策略。