Trackman 先生于 2006 年加入 LMP 产品管理办公室 (PMO),担任政府支持承包商,负责组织、指导和管理企业信息管理 (CIM) 业务领域职能活动。在担任该职位期间,他在 2009 年 LMP 第二次部署中发挥了关键作用。随后,他于 2010 年加入政府,担任物流管理部负责人,负责管理信息保障、技术基础设施、遗留维护、客户支持、部署稳定和业务转型。在担任该职位期间,他成功管理了 2010 年 LMP 的第三次也是最后一次部署。从 2011 年 12 月到 2017 年 12 月,他担任 LMP 的维持助理产品经理,负责监督部署/运营生产基线的管理,以及合规性和可审计性法定和监管要求。
2)增加美国电网上的地热能:降低地热能源各个方面的风险和成本,包括勘探,钻探和部署,以使地热能量成为能源投资组合中越来越有吸引力的一块。3)在整个美国扩大地热能机会:提高可部署技术和对全国深度egs,地热热泵,地区供暖和热能存储的认识。
摘要:农产品副产品和微藻是具有神经保护特性的低成本、高价值的生物活性化合物来源。然而,治疗分子的神经保护效果可能受到其穿过血脑屏障 (BBB) 到达大脑的能力的限制。在本研究中,对已证明具有体外神经保护潜力的刺槐 (ASFE)、Cyphomandra betacea (T33)、小粒咖啡 (PPC1)、油橄榄 (OL-SS)、柑橘 (PLE100) 副产品和微藻 Dunaliella salina (DS) 的各种绿色提取物进行了基于永生化人脑微血管内皮细胞 (HBMEC) 模型的体外 BBB 通透性和运输测定。进行了毒性和 BBB 完整性测试,并在孵育 2 和 4 小时后使用气相色谱和液相色谱结合四极杆飞行时间质谱 (GC/LC-Q-TOF-MS) 评估了目标生物活性分子穿过 BBB 的运输情况。HBMEC-BBB 运输试验显示,代表性神经保护化合物(如单萜和倍半萜、植物甾醇和一些酚类化合物)具有高渗透性。从拟议的体外 BBB 细胞模型中获得的结果进一步证明了目标天然提取物的神经保护潜力,这些提取物是功能性成分的有希望的来源,可以转化为具有科学支持的神经保护声明的食品补充剂、食品添加剂或营养保健品。
b'genation 的 C3 和 C2 位尚未开发。在此,我们报道了一种无催化剂获取 1-芳基 2,3-二碘咔唑 [7,8] 的方法,其中涉及碘转位(方案 1D)。值得注意的是,我们的方案允许在三个连续位置 [9] 即 C1、C2 和 C3 对咔唑核心进行可控官能化。环化前体 (碘吲哚基)炔醇 1a \xe2\x80\x93 n 是使用已知程序由适当的吲哚-2-甲醛制备的。[5] 我们的旅程始于研究苯基取代炔醇 1a 作为模型底物的反应(表 1)。 [10] 我们研究了 1a 与几种碘化试剂(如 I 2 、NIS、ICl 和 Ipy 2 BF 4 )的反应。在碳酸钠存在下,在异丙醇中,在 15 °C 下使用 ICl [11] 可有效实现串联碘环化-碘移位。使用 1.1 倍过量的 ICl 可得到三环 2a ,产率为 50%(表 1,条目 5),而使用 2.5 倍过量的 ICl 可得到所需的杂环,产率为 60%(表 1,条目 3)。通过对粗反应混合物进行 TLC 和 1 H NMR 分析观察到总转化率,未检测到副产物或聚合反应。然而,在柱层析纯化 2,3-二碘-咔唑 2a 的过程中观察到一些分解,这可能是导致分离产率适中的原因。值得注意的是,重排的 1-苯基-2,3-二碘-咔唑 2a 是唯一的区域异构体。使用有机碱代替 K 2 CO 3 或不同的溶剂'
摘要 CRISPR-Cas基因组编辑工具的快速发展极大地改变了研究方式,并为其临床应用带来了巨大的希望。在基因组编辑过程中,CRISPR-Cas酶在靶位点诱导DNA断裂,随后DNA修复途径被激活以产生多样化的编辑结果。除了脱靶切割之外,不良编辑结果包括染色体结构变异和外源DNA整合最近也引起了对临床安全性的担忧。为了消除这些不良编辑副产物,我们需要从DNA修复的角度探索形成多样化编辑结果的潜在机制。在这里,我们描述了修复Cas酶诱导的DNA双链断裂所涉及的DNA修复途径,并讨论了不良编辑副产物的来源和对基因组稳定性的影响。此外,我们提出了抑制DNA修复途径以增强基因编辑的潜在风险。最近DNA修复和CRISPR-Cas编辑的结合研究为进一步优化基因组编辑以增强编辑安全性提供了框架。
可以解决气候变化和自然资源问题,促进生态正义,缓解策略,能源消耗,能源开发,环境健康,劳动力发展以及将部落更加绿色的所有努力,利用可持续的方法论,并代表NEZ PERCE PERCE TRIVE和代表Nez Perce Trive。
摘要:进行这项研究是为了确定与丁基羟基甲苯甲酸(BHT)相比,从蓝莓加工的副产物获得的两个冻干提取物(BHT)在延迟受到高温供热的阳光氧化的脂质氧化方面,延迟了在180°C; cynody profe prosection frofe profe proffereptry profe profe profterecty profe proftery profter profe proftery cy proftery cy to profe proftery cy prowsy cy prowsy controferative propproudication conteragy的副产子较高。从罗马尼亚,阿里森尼(Alba County)和帕尔蒂尼(Sibiu County)的两个区域的自发性植物中收获了水果,并根据Abbe和PBBE的起源位置记录了蓝莓副产品提取物(BBE)。根据过氧化物值(PV),p-苯胺值(p -AV),研究脂质热氧化的进展,通过硫巴比妥酸(TBA)方法评估的TBA-甲基二醛相互作用的响应,总氧化(Totox)值(Totox)值(Totox)值(Totox)值和抑制油氧化(IOO)。记录的数据强调了BBE对脂质热氧化的抑制作用很高。抑制性效应是浓度依赖性的,因此,脂质氧化程度与BBE剂量相反。与800 ppm bbe(Abbe,PBBE)补充的油样品暴露于高温加热12 h,导致评估指数的显着减少,与无添加剂的阳光相比,与以下方式相比:PV(46%; 45%; 45%; 45%),p-av(21%; 17%; 17%; 17%; 17%; 17%; 11%)。中等水平的500 ppm BBE抑制了类似于200 ppm bht的脂质氧化。关于起源对BBE抑制脂质氧化降解的潜力的影响,据指出,源自蓝莓在一个具有中等沉淀和较高温度的地区生长的蓝莓,显示出对脂质热氧化的抑制作用更强的抑制作用。报告的结果表明,BBE代表了有效的天然抗氧化剂,可以成功地应用这些抗氧化剂,以改善在各种高温食品应用中使用的阳光油的热氧化稳定性。
化石天然气的蒸汽甲烷改革(SMR)或煤气的气体;这些分别占全球氨产能的72%和22%。1其他用于氨产生的原料包括燃料油(4%)和石脑油(1%)。6氨产量约占全球化石能源使用的2%,每年产生超过4.2亿吨的CO 2,占全球Anthro-Onthro-Pogenic CO 2排放量的1.2%。1,5为了使氨部门脱碳,从可更新的资源和工业副产品产生的替代氨产生途径越来越兴趣。使用当前的技术,可以使用可再生电力作为空气分离和水电的主要能源来产生无碳资源(水和空气)的氨是可行的。5,7,例如,氮肥制造商Yara最近建造的一家商业植物,证明了将可再生用电分解为H 2和O 2,以及Haber - Bosch(HB)反应将H 2和N 2结合起来,以产生低碳氨。8 Morgan等。 对风能氨的生产进行了两项技术经济分析,以证明该过程的经济可行性。 3,78 Morgan等。对风能氨的生产进行了两项技术经济分析,以证明该过程的经济可行性。3,7
完整作者列表:刘新宇;阿贡国家实验室,能源系统部 Elgowainy,Amgad;阿贡国家实验室,能源系统部 王,迈克尔;阿贡国家实验室,能源系统部
EGLE 在管理任何计划或活动时不会因种族、性别、宗教、年龄、国籍、肤色、婚姻状况、残疾、政治信仰、身高、体重、基因信息或性取向而歧视任何人,并禁止恐吓和报复,这是适用法律和法规的要求。如有疑问或疑虑,请联系非歧视合规协调员,邮箱地址为 EGLE-NondiscriminationCC@Michigan.gov,电话为 517-249-0906。