除了预期的主要产品外,大多数化学反应还会产生大量副产品和副产物。虽然化学家可以预测许多主要的工艺杂质,但列举可能的次要杂质仍然是一个挑战,而系统地预测和追踪来自原材料或从一个合成步骤传播到下一个合成步骤的杂质则更具挑战性。在本研究中,我们开发了一种人工智能辅助方法,使用主要反应物以及这些材料中的试剂、溶剂和杂质作为输入,来预测和追踪多步反应中的杂质。我们展示了该工具在从苯酚合成对乙酰氨基酚的简单案例中的实用性,并提供了涵盖大多数化学反应的通用框架。我们的解决方案可用于 (1) 更快地阐明杂质、(2) 自动解释高通量反应筛选产生的数据,以及 (3) 更彻底的原材料风险评估,其中每一项都代表了小分子药物商业工艺开发中的关键工作流程。
执行摘要 虽然电动汽车的出现和普及有助于减少交通运输部门的碳排放,但物理限制的存在将使这些解决方案难以在该部门的某些领域部署,例如长途货运和航空。氢气是一种很有前途的选择,因为它的重量能量含量为 122kJ/g,几乎是汽油的 2.5 倍,没有含碳的燃烧副产物,并且可以用于高效燃料电池汽车。然而,氢气生产可能是二氧化碳的重要来源,因为美国生产的 95% 以上的氢气是由蒸汽甲烷重整制成的,其中 CO 2 是主要副产品。为了使大规模氢气生产被视为交通减排的可行选择,氢气系统必须配置为 a) 最大限度地减少碳减排和 b) 以与传统生产具有竞争力的成本或符合联邦目标(即 < 2.00 美元/千克氢气生产)生产氢气。本报告比较了三种氢气生产配置的技术经济评估:
金属氯化物配合物在温和条件下与Tris(三甲基甲硅烷基)磷酸反应,以产生金属磷化物(TMP)纳米颗粒(NPS),而氯甲基甲硅烷则作为副产物。与起始M-CL键更强的Si-Cl键的形成是反应的驱动力。通过使用[RUCL 2(Cymene)]和Tris(Trimet-hylsilyl)磷酸在35°C中制备该策略的潜力。将小(1.3 nm的直径为1.3 nm)和无定形NP形成,其整体RU 50 P 50组成。有趣的是,这些NP可以很容易地固定在功能支持材料上,这对于在催化和电催化中的潜在应用引起了极大的兴趣。mo 50 P 50和CO 50 P 50 NP也可以按照相同的策略合成。这种方法简单且通用,并为在轻度反应条件下制备广泛的过渡金属磷化物纳米颗粒的方式铺平了道路。
(斯坦福大学博士后)研究 2 型糖尿病相关基因 ZMIZ1 缺失对人类 β 细胞的影响 Catherine Dombroski(加州大学戴维斯分校博士生)进化和饮食偏好差异对胰腺结构和胰岛功能的影响 Madelynn Tucker(加州大学戴维斯分校博士生)接触交通相关空气污染会降低大鼠 β 细胞成熟度标志物 Kassy Lopez(希望之城博士生)阐明反应性代谢副产物作为 2 型糖尿病预测因子和驱动因素的作用 Nathan Vaughan(杨百翰大学本科生)探索胰腺 β 细胞中转录因子 Nkx6.1 和 Pdx1 之间的相互作用 Claire Levitt(科罗拉多大学博士生)设计假胰岛以研究人类胰岛的间隙连接 Seth Sharp(斯坦福大学博士后)胰岛的整合利用 GWAS-in-a-Dish 进行多组学研究,识别葡萄糖刺激的胰岛素分泌和胰岛素含量的细胞调节剂 6.00-7.00 PM 晚餐前的自由交流时间
医疗保健,汽车和航空等领域。其中,灵活且耐磨的电子设备表现出越来越多的兴趣,例如可植入的医疗设备,[1]可穿戴健康监测系统,[1,2]柔性显示器,[3]和智能服装。[4]使用刚性且相对不安全的锂离子电池(LIB)作为电源的常规设备,无法满足生物友善和灵活特征的未来需求。此外,柔性液体的瓶颈,例如高成本,安全问题和复杂的制造要求限制了灵活性液体的商业化。作为有希望的替代品,锌离子电池(Azibs)引起了人们的关注。由于锌金属的高容量容量(5855 mAh cm-3),它们被视为柔性设备的竞争候选者及其易于制造的工艺。与此同时,对于Azibs的$ 25/kWh [5],与LIBS相比,$ 135/kWh [6,7],对在不同规模的设备尺度上应用Azibs是有益的。锌离子电池(Azibs)通常会遭受不利的水引起的副反应,从而导致锌树突形成,阴极构造的溶解以及在阴极上的副产物形成,从而导致快速容量淡出。由于水电解(稳定
引物编辑器 (PE) 可以在不造成供体 DNA 或双链断裂的情况下安装所需的碱基编辑,已用于植物,原则上可以加速作物改良和育种。然而,它们在植物中的编辑效率通常较低。通过基于熔化温度设计序列来优化引物编辑向导 RNA (pegRNA)、使用双 pegRNA 和工程 PE 均已被证明可以提高 PE 效率。此外,基于水稻引物编辑实验数据开发了一个自动化 pegRNA 设计平台 PlantPegDesigner。在本方案中,我们介绍了使用 PlantPegDesigner 设计和优化 pegRNA、构建具有增强编辑效率的工程植物 PE 载体进行引物编辑、使用报告系统评估引物编辑效率以及通过深度扩增子测序比较 PE 的有效性和副产物的详细方案。利用该方案,研究人员可以在4 – 7天内构建优化的用于引物编辑的pegRNA,并在3个月内获得引物编辑的水稻或小麦植物。
摘要:塑料在现代生活中发挥着重要作用,目前塑料回收利用的发展要求很高且具有挑战性。为了缓解这一困境,一种选择是开发在整个材料生命周期中与环境兼容的新型可持续生物塑料。我们报道了一种由天然 DNA 和生物质衍生的离子聚合物制成的可持续生物塑料,称为 DNA 塑料。可持续性涉及 DNA 塑料的生产、使用和报废选择的所有方面:(1)原材料来自生物可再生资源;(2)水处理策略对环境友好,不涉及高能耗、使用有机溶剂和产生副产物;(3)实现可回收和非破坏性利用,显着延长塑料的使用寿命;(4)废塑料的处理遵循两条绿色路线,包括废塑料的回收利用和温和条件下酶引发的可控降解。此外,DNA塑料可以“水焊接”成任意设计的产品,例如塑料杯。这项工作提供了一种将生物基水凝胶转化为生物塑料的解决方案,并展示了DNA塑料的闭环回收,这将推动可持续材料的发展。■ 简介
摘要:蛋白质的定量和选择性标记广泛用于学术和工业劳动力中,以及使用转肽酶(例如排序酶)对蛋白质进行催化标记,已被证明是这种选择性修饰的流行策略。对这类酶的一个主要挑战是,大多数程序需要过量的标记试剂或激活的底物,而不是简单的商业化肽。我们报告了使用耦合酶策略的使用,该酶策略可以使用未激活的标记肽对蛋白质进行定量N-和C末端标记。与转肽酶结合使用氨基肽酶的使用可以使肽副产物的序列 - 特异性降解,从而将平衡转移到有利于产物形成,从而极大地提高了反应效率。随后对反应的优化允许使用肽标记与蛋白质和蛋白质和C末端标记的N末端标记,只有一小段过量。最大程度地减少定量标记所需的底物量具有改善工业过程并促进转肽作为蛋白质标记方法的使用。
卤代有机化合物在工业和农业中的广泛使用对环境和公共健康构成了重大挑战。这些化合物具有毒性、疏水性和抗降解性,会在土壤和地下水中积累,导致长期污染(Ackerman Grunfeld 等,2024;He 等,2021)。有机卤化物呼吸细菌(OHRB),包括脱卤球菌、脱卤单胞菌和脱卤杆菌,在不同环境中对这些污染物的转化起着关键作用(Matturro 等,2017;Qiu 等,2020;Xu 等,2024)。然而,卤代有机污染物的微生物降解有时效率低下。降解率通常较低,在某些情况下,这些微生物转化会产生更多有毒副产物(Ding 等,2013)。为了应对这些挑战,需要创新策略来调节和增强 OHRB 的代谢活性,从而加速卤代有机污染物的降解。本研究主题精选了一系列前沿研究,为微生物脱卤过程、与功能材料的相互作用以及环境修复的综合方法提供了见解。通过汇集该领域的六项最新研究,我们希望促进对更有效地降解和修复有机卤化物污染物的综合方法的理解和应用。
• Lapomarda, A., et al., (2019). 基于果胶-GPTMS 的生物材料:面向组织工程应用的可持续 3D 支架生物打印。生物大分子,21 (2),319-327。 • Fortunato, GM, et al., (2019). 由水解角蛋白基生物材料制成的电纺结构,用于开发体外组织模型。生物工程和生物技术前沿,7,174。 • Lapomarda, A., et al., (2021). 果胶作为明胶基生物材料墨水的流变改性剂。材料,14(11),3109。 • Lapomarda, A., et al., (2021). 用于 3D 生物打印的果胶-明胶生物材料配方的物理化学表征。大分子生物科学,21(9),2100168。 • Pulidori, E., 等人,(2021)。一锅法:微波辅助角蛋白提取和直接电纺丝以获得角蛋白基生物塑料。国际分子科学杂志,22(17),9597。 • Pulidori, E., 等人(2022)从家禽羽毛中提取绿色角蛋白所产生的不溶性副产物作为生物复合材料填料的价值评估。热分析与量热学杂志:1-14。