在对混合伺服驱动器进行任何接线之前,必须断开交流输入电源。 即使电源已关闭,在电源 LED 熄灭之前,直流链路电容器中仍可能残留具有危险电压的电荷。请勿触摸内部电路和组件。为了安全维护,请使用万用表测量 +1 和 – 端子之间的电压。测量值应低于 25V DC,系统才能正常运行。 印刷电路板上有高灵敏度的 MOS 元件。这些组件对静电特别敏感。在采取防静电措施之前,请勿触摸这些组件或电路板。切勿重新组装内部组件或接线。 使用接地端子将混合伺服驱动器接地。接地方式必须符合交流马达驱动器安装地区法规。 本系列产品用于控制三相感应马达及永磁同步马达。不可用于单相马达或其他用途。 本系列产品不可使用于可能危及人身安全的场合。 请防止儿童或未经授权的人员接近混合伺服驱动器。
感谢您选择台达多功能 VFD-EL 系列。VFD-EL 系列采用高品质组件和材料制造,并结合了最新的微处理器技术。本手册用于交流电机驱动器的安装、参数设置、故障排除和日常维护。为保证设备安全运行,在将电源连接到交流电机驱动器之前,请阅读以下安全指南。请保留此操作手册并分发给所有用户以供参考。为确保操作员和设备的安全,只有熟悉交流电机驱动器的合格人员才能进行安装、启动和维护。在使用 VFD-EL 系列交流电机驱动器之前,请务必仔细阅读本手册,尤其是“警告”、“危险”和“小心”说明。未遵守规定可能会导致人身伤害和设备损坏。如果您有任何疑问,请联系您的经销商。请在安装前阅读安全须知。
协议骨化延迟了TLS 1.3多年的推出,并再次成为量词后加密术的推出的障碍。在最近对TLS服务器的大规模研究中,我们评估了Quantum关键协议的部署兼容性,发现了令人惊讶的结果和见解。值得注意的是,由于较大的钥匙尺寸,我们观察到了众所周知的客户端透明消息问题的方案骨化。我们相信,量词后证书将出现更多的惊喜,这使得部署比“转换的翻转”过渡更为复杂。在本演讲中,我们分享了研究的发现,并强调了早期测试以确定潜在的量化后移民挑战的重要性,而不是对可能出现问题的假设做出假设。我们介绍管理Quantum PKI实现后的复杂性时可能出现的细微部署复杂性和操作问题,特别是对于最终用户连接稳定性。通过提供实用的见解,我们希望为量词后时代的更平稳转变做出贡献,增强了加密性的能力,并增强了Web PKI作为副产品的可靠性。
摘要。近年来,零工经济改变了许多人的工作方式。这一研究现象吸引了来自不同领域的科学家进入这一新兴研究领域。鉴于该主题的现实性和观点的多样性,迫切需要收集和联系研究成果,作为未来讨论的基础。从收集 139 篇关于零工经济、零工工作和相关术语的出版物开始,我们确定了文献中的一些趋势和潜在的研究兴趣。特别是,我们围绕零工经济的概念(零工工人、零工工作和数字平台)组织文献,并从文献中得出一些有趣的见解。最后,我们确定了现有关于零工经济工作的文献中的重要空白,并为未来的研究提供了指导。
尽管该地区过去有两个自行车共享系统连接了渥太华河的两侧,但两者都没有维持。2021年,渥太华市开始试行一项电动踏板车计划,该计划继续通过渥太华的两个服务提供商运营。虽然电动踏板车提供微型驾驶服务,但鉴于踏板车没有提供与自行车相同的范围或货物范围或选项的局限性。减少我们对个人车辆的依赖对于实现区域(和国家)气候目标至关重要。为此,居民需要可靠地使用可持续和公平的低碳运输选择。自行车共享是短途旅行,快速差事,访问社区服务以及链接到我们不断增长的运输系统的绝佳选择。通过这项可行性研究,我们正在寻求了解渥太华 - 盖蒂诺地区成功自行车共享系统的潜在方法和财务要求。本研究将概述不同选择的潜在结果,成本,风险和收益,并提供详细的信息和实施建议,以促进合作伙伴的决策。
为确保电池模块的安全性和可靠性,它有一个内置的电池监测单元 (CMU) 来管理电池平衡并收集单个电池的温度、电压信息。每个模块的 CMU 与中央 BMU(电池管理单元)通信,以保护电池模块免受过热、过充或过放等异常情况的影响。内置的通信接口允许通过能源管理系统 (EMS) 进行远程监控和控制,以执行削峰、时间平移、公用事业辅助服务等功能。
蒙台梭利原则有效地进入儿童的生活。该原则是一项指南,可以认识并适应每个孩子的发育水平和提供个性化教学的兴趣,这对于神经多样性的学生至关重要。因此,儿童可以按照自己的节奏进行课程,而不会承受预定的等级水平的基准,同时在适当水平的所有学习领域都受到挑战。多感官活动和动手学习有助于在蒙台梭利教室中学习,以及差异化的教学和个人方法,具体取决于每个学生的需求。鼓励学生学习并拥有四处走动的自由,这使那些需要体育锻炼或可能很难在传统课堂环境中注意的人受益。此外,蒙台梭利教室还提供了一个结构化的环境,可帮助儿童发展组织和时间管理技能,最终导致更大的独立性。使用有助于坐着,写作,阅读或移动的不同设备,这些设备在特殊需要的教室或房屋中至关重要。这些项目是在这种情况下支持个人的必要工具。Montessori课程是基于我们对儿童学习和思考的哲学的某些原则而设计的,而这种方法对学习困难和认知和发育障碍的学生特别有益。
自我功率+ 52英寸Z6零骑行割草机是ZTR,就像其他地方一样采用Peak Power™+技术,它结合了高达6个EGO 56V ARC LITHIUM™电池的功率 - 相同的电池技术为所有EGO产品提供动力,使其成为世界上第一个兼容的骑手。采用5个独立无刷电动机设计,可在切割和驾驶功率方面提供25马力,等效于燃气发动机。使用52英寸的10号制造钢甲板制造,并达到8 mph的最高速度,该新的ZTR可以使您更快地覆盖地面一次充电,最多可将4英亩的土地切成六英亩,包括六个EGO 12.0AH 56V ARC LITHIUM™电池。与市场上的任何其他电池供电的ZTR不同,可以添加更多电池以削减5、6、7或尽可能多的英亩。该行业最快的充电器在短短4个小时内收取6 x 12.0AH的费用,比竞争对手快4倍。可调座悬架可确保平稳的骑行。使用具有3种驾驶模式的LCD接口自定义割草体验:控制,标准和运动 - 可以用手指的简单触摸来访问。高级功能,例如LED灯,USB充电端口和蓝牙等优质功能,以使体验与其他任何ZTR不同。为耐用性而构建 - 割草机,电池和充电器都有5年的保修。在全新的自我力量+ 52英寸Z6零转弯割草机上,从未像现在这样的零割草
石墨(光面)(外层) 0 至 0.3(外层) 0 至 0.3(外层) 0 至 0.3(外层) 0 至 0.3 NDS K 4816
摘 要: 采煤机是综采工作面的核心装备,研发智能采煤机器人是实现综采工作面智能化的关键。 综合分析当前采煤机机器人化研究进程中的传感检测、位姿控制、速度控制、截割轨迹规划与跟 踪控制等技术的研究现状,提出研发智能采煤机器人必须破解的 “ 智能感知、位姿控制、速度控制、 截割轨迹规划与跟踪控制、位 − 姿 − 速协同控制 ” 五大关键技术,并给出解决方案。针对智能感知 问题,提出了构建智能感知系统思路,给出了智能采煤机器人智能感知系统的架构,实现对运行 状态、位姿、环境等全面感知,为智能采煤机器人安全、可靠运行提供保障;针对位姿控制问题, 提出了智能 PID 位姿控制思路,给出了改进遗传算法的 PID 位姿控制方法,实现了智能采煤机器 人位姿精准控制;针对速度控制问题,提出了融合 “ 力 − 电 ” 异构数据的截割载荷测量思路,给出 了基于神经网络算法的截割载荷测量方法,实现了截割载荷的精准测量;提出牵引与截割速度自 适应控制思路,给出了人工智能算法牵引与截割速度决策方法和滑模自抗扰控制的牵引与截割速 度控制方法,实现了智能采煤机器人速度精准自适应控制;针对截割轨迹规划与跟踪控制问题, 提出了截割轨迹精准规划思路,给出了融合地质数据和历史截割数据的截割轨迹规划模型,实现 了截割轨迹的精准规划;提出了截割轨迹精准跟踪控制思路,给出了智能插补算法的截割轨迹跟 踪控制方法,实现了智能采煤机器人截割轨迹高精度规划与精准跟踪控制;针对 “ 位 − 姿 − 速 ” 协同 控制问题,提出了 “ 位 − 姿 − 速 ” 协同控制参数智能优化思路,给出了基于多系统互约束的改进粒子 群 “ 位 − 姿 − 速 ” 协同控制参数优化方法,实现了智能采煤机器人智能高效作业。深入研究五大关键 技术破解思路,有利于加快推动研发高性能、高效率、高可靠的智能采煤机器人。