侧通风压力响应场麦克风型号 377A14 是一种侧通风压力场设计,当用于齐平安装的腔体、管道、墙壁或面板时,可实现大气压均衡,因为这些腔体、管道、墙壁或面板内部的静态工作压力与结构外部相比变化很大。377A14 用于高水平或高频测量,并与风洞壁齐平安装。为获得最佳效果,请与 PCB ® 型号 426A05 无通风前置放大器一起使用,或订购型号 378A14、麦克风和前置放大器配对。极化电压型号 377A14 是一种预极化设计。与前置放大器结合使用时,它设计为在 ICP ® 传感器电源或任何 2-20 mA 恒定电流源下工作。这种现代设计是便携式测量或高湿度应用中操作的首选。设计优势包括使用普通同轴电缆和与其他 ICP ® 传感器(加速度计、压力传感器、力传感器等)的互换性,从而节省设置时间并降低通道成本。
硕士论文 LIZARD 实验的电子子系统设计 联系人:Lennart Ziemer l.ziemer@tu-berlin.de 甲虫、壁虎、蜘蛛和其他昆虫的肢体上形成了微结构,使它们能够粘附在几乎任何表面上。它们的工作原理基于范德华力,这使得它们能够在太空中使用。宇航系小型卫星会合与机器人小组利用合成壁虎材料开发对接机制。微结构干胶(MDA)。它们除了具有被动性和简单性之外,还具有重量轻、无需电源等优点。当前的合成 MDA 由对空间环境特性(例如温度波动、真空和辐射)敏感的聚合物制成。 LIZARD(长期研究零重力、真空和辐射对壁虎材料的影响)实验旨在更深入地了解这些环境因素的长期影响。实验包括四个相同的组件,每个组件由一个线性电机、一个力限制器、一个 MDA、一个表面探头、一个摄像机、一个光源、一个温度传感器和一个力传感器组成。
•入口 /出口管存根:与FPB互连S / C管道;配备5μm滤网(11µm过滤速率)•高压/低压阀:用于推进剂隔离或质量流量/压力控制/压力控制•高压力传感器:用于压力测量的高压传感器:用于输入闭环的闭环控制出口/质量压力•降低压力或较小的压力范围:较小的压力范围:中间的气体范围:蓬松的范围:蓬松的气体范围:蓬松的气体范围:蓬松的气体范围:蓬松的气体范围:蓬松的气体范围:加油的中间压力,传感器的头到S/C电气基础设施;可以配备连接器•填充和排水阀:为每个组件类别连接到储罐连接的高压线几个亚型允许使用优化的系统设计。例如,压力传感器以1 bar,4 bar,50 bar,200 bar和300 bar全范围的亚型提供。可以在笔直的管之间选择流体界面,用于焊接,直接焊接的直管,安装式配件和VCR。
摘要:本文介绍了基于电容性变化的低成本和多触摸传感器的新设计和开发。这个新传感器非常灵活且易于制造,使其成为软机器人应用程序的适当选择。该传感器中使用的材料(导电墨水,有机硅和控制板)是便宜且在市场上很容易找到的。提出的传感器由不同层的晶圆,带有导电墨水的硅胶层和压力敏感的导电纸片制成。像E-Skin这样的先前方法可以测量像人体或纤维等导电物体的接触点或压力,而所提出的设计使传感器能够检测物体的接触点和施加力,而无需考虑对象的材料电导率。传感器可以同时检测五个多点触点。在存在噪声,增益变化和非线性的情况下,使用神经网络结构以可接受的精度来校准施加力。通过商业精确力传感器(ATI)实时测量的力与通过在两个电极层之间更改层的电容获得的产生的电压映射。最后,嵌入建议的触觉传感器的软机器人抓手被用来掌握具有位置和力反馈信号的物体。
作为一名讲师,尼古拉斯·阿格拉特(NicolásAgraït)教授了各种本科物理学课程,包括流体物理学,计算机科学,实验技术,量子力学和固态物理学。他以清晰且易于访问的方式传达概念的能力给他的学生留下了持久的印象,其中许多人继续从事学术界和行业的成功职业。他还监督了许多单身汉和硕士学位,这使他的学生有机会开始进行科学职业。总体而言,尼古拉斯(Nicolás)监督了12个博士学位论文,以智慧和奉献精神指导他的学生,鼓舞人心的好奇心和科学严谨。尼古拉斯·阿格拉特(NicolásAgraït)教授自1989年加入UAM中的低温实验室以来一直在扫描探针显微镜领域工作。在那里,他在低温下建立了新的扫描隧道显微镜(STM),并研究了从隧道状态到接触式的过渡,以解释纳米尺寸金属中电导的量化。奇异力传感器的发展使他能够在纳米尺度上研究塑性变形过程,表明在此规模上,塑性变形过程是作为一系列弹性阶段进行的,并与原子重排交替进行。这些作品的影响很高。
摘要 — 本研究开发了一种机器人矫形器,能够检测佩戴者移动手指的意图,然后增强其肌肉力量。目的是生产一种可用于中风后手部康复的装置。矫形器的设计基于现有设计,使用 BLENDER 2.78 版进行了修改,并用 ABS 塑料打印。执行器安装在矫形器的后端,以提供驱动,使手指进行全范围的屈伸运动。力传感器嵌入在矫形器的指尖,以检测微小的手指运动。对于中风幸存者无法进行小指运动的严重病例,该研究采用脑机接口来检测移动意图。机器人矫形器在检测松开和握紧活动以及响应驱动矫形器手指方面的准确率分别达到 64.1% 和 62%。结果表明,这里提出的设计有助于提供有效的手部康复。研究得出结论,结合 BCI 系统的设计能够在临床环境中进行手部康复,因为它在检测患者移动意图和做出响应方面具有一定程度的准确性。这种设计成本低,因此将减轻资源匮乏国家的中风幸存者的经济负担。
纤维的快照已被用作跨人类文化的数千年的一种交流和音乐形式。但是,尚未对这种快速运动的动力学进行系统分析。使用高速成像和力传感器,我们分析了纤维快照的动力学。我们的分析揭示了皮肤摩擦在介导SNAP动力学中的核心作用,通过充当控制所得高速度的闩锁。我们通过用不同的材料覆盖拇指和中纤维,以产生不同的摩擦系数和不同的可压缩性来评估这种摩擦闩锁的作用。在这样做时,我们揭示了纤维垫的可压缩摩擦闩锁可能在最佳调整的摩擦和压缩方案中运行。我们还开发了一种柔软的,可压缩的摩擦的闩锁介导的春季驱动(LAMSA)模型,以进一步阐明摩擦的关键作用及其与可压缩闩锁的相互作用。我们的数学模型表明,摩擦在纤维扣中起着双重作用,既有助于载荷,也可以在阻碍能量释放的同时进行储能。我们的工作揭示了如何将表面之间的摩擦作为可调的闩锁系统利用,并为许多机器人技术和超快速的能量释放结构的摩擦复杂性提供了设计见解。
摘要。触摸后的康复装置是必不可少的,因为中风攻击可能导致人体的一部分或一半。外骨骼可能是中风后患者康复的重要装置。几项研究提出了用于康复目的的外骨骼设计,以实现人类肢体疾病。这项研究旨在根据肌电或任何其他传感器回顾手部外骨骼设备的最先进。本文有望使用肌电传感器和力传感器同时设计手外骨骼设备。这是通过审查与外骨骼开发有关的几篇文章来实现的,尤其是在传感器系统,数据处理和执行器系统中。结果表明,仍然发现使用Ag电极一次性AG(AGCL)检测手指在手上的运动,因为该传感器可以减少伪影噪声。在几项研究中也发现了肌臂的使用,因为它具有无线特性,因此易于使用。在处理器方面,Arduino微控制器比其他微控制器更广泛地使用。为了激活手部外骨骼,伺服电动机被更广泛地用于启动手指关节,这比其他执行器更精确。在进一步的发展中,外骨骼系统和信息系统之间的整合将是一个预期的挑战。希望,这种外骨骼的发展可以作为康复装置应用于故障或瘫痪的患者。
肉桂酸 (CA) 具有重要的心血管作用,如保护心脏、抗动脉粥样硬化、抗高血脂和抗氧化,这预示着它在高血压治疗中具有潜在作用。这项研究旨在调查 CA 在 Sprague Dawley (SD) 大鼠中的抗高血压潜力,随后对其进行评估,以了解其在各种血管制剂中的作用。在麻醉状态下,对正常血压和高血压大鼠采用侵入性血压监测技术。使用来自大鼠和兔子的分离主动脉环、Langendorrf 灌注的兔离体心脏和豚鼠右心房来探究潜在机制。使用连接到 PowerLab 数据采集系统的压力和力传感器记录反应。静脉注射 CA 分别导致高血压大鼠和正常血压大鼠的平均动脉压 (MAP) 下降 54% 和 38%。在大鼠主动脉环中,CA 表现出毒蕈碱受体相关的 NO 和吲哚美辛敏感的内皮依赖性 ( > 50%) 和钙拮抗剂以及 K ATP 介导的内皮非依赖性血管扩张作用。CA 在豚鼠心房条中表现出负性肌力和变时性作用。CA 抑制心室收缩力和心率,同时导致冠状动脉流量增加 25%。这项研究支持了 CA 作为抗高血压药物的药用重要性。
机器人校准问题:准确性、可重复性和校准 Kevin L. Conrad、Panayiotis S. Shiakolas shiakolas@uta.edu、T. C. Yih 机械和航空航天工程。德克萨斯大学阿灵顿分校自动化与机器人研究所,美国德克萨斯州阿灵顿 76019,shiakolas@uta.edu 摘要。为关节式机器人手臂开发了使用接触式探头的接触校准方法的基础。该解决方案是在基于串行连杆机械手的运动机械设计的机器人当前校准和计量问题中提出的。探索了准确性、可重复性和分辨率,并采取了一种简单的方法。本练习旨在为探索在机器人手臂末端集成商业产品(如力传感器或触发式探头)的可行性奠定基础。确定候选流程和/或应用程序。研究结果表明,准确、可重复且经济高效的在线接触校准方法将是一种理想的解决方案。关键词。机器人精度、重复性、校准、分辨率 1 简介 机器人行业的主要技术障碍之一是减少工具框架和目标框架之间的误差。这种错误的来源很容易确定。控制器和机器人之间的建模差异是造成基座框架和工具框架之间大部分误差的原因。不准确的夹具和制造工艺可以解释工位框架和目标框架之间的差异。这些框架的定义如图所示。1 [1]。