摘要目的。脑损伤是全球范围内导致长期残疾的主要原因,常常导致手部功能受损。脑机接口 (BMI) 为改善手部功能提供了一种潜在的方法。BMI 通常旨在替代失去的功能,但也可用于神经康复 (nrBMI),促进神经可塑性和功能恢复。本文,我们报告了一种新型 nrBMI,它能够通过独特的 TBI 后开颅手术窗口模型获取高 g (70-115 Hz) 信息,并提供与预期抓握力同步且成比例的感觉反馈。方法。我们开发了 nrBMI,以使用在脑外伤 (TBI) 患者开颅手术 (hEEG) 中记录的脑电图。nrBMI 使用户能够对施加的力进行连续、成比例的控制,并提供连续的力反馈。我们报告了初始测试组由三名 TBI 人类参与者组成,以及对照组由三名颅骨和运动功能完整的志愿者组成。主要结果。所有参与者均成功控制了 nrBMI,初始成功率很高(6 名参与者中的 2 名)或表现随着时间的推移而改善(6 名参与者中的 4 名)。我们在 hEEG 中观察到了力意图的高 g 调制,但在颅骨完整的 EEG 中没有观察到。最重要的是,我们发现高 g 控制显著改善了神经调制开始和 nrBMI 输出/触觉反馈之间的时间同步(与低频 nrBMI 控制相比)。意义。这些概念验证结果表明,高 g nrBMI 可供控制力能力受损的个体使用(无需立即诉诸 ECoG 等侵入性信号)。值得注意的是,nrBMI 包含一个参数,用于更改解码意图和意志力之间共享的控制分数,以调整恢复进度。神经调节和高 g 信号力控制之间的同步性提高可能对最大限度地发挥 nrBMI 诱导神经回路可塑性的能力至关重要。诱导可塑性对于脑损伤后的功能恢复至关重要。
模块化卫星架构的持续发展,加上自适应制造工艺的改进,为太空制造创新乃至在轨服务铺平了道路。目前,卫星在轨制造面临的挑战包括高度可靠、精确和自适应的制造和检查过程、解决地球上意外问题的远程操作方法,以及对所有相关活动和条件进行数字化表示以保持完全控制的手段。AI-In-Orbit-Factory 项目使用各种 AI 方法解决了每个挑战。对于在轨工厂和所有正在进行的过程的必要数字化表示,使用了基于知识的方法和数字孪生方法,从而实现了自适应、灵活和易于理解的制造过程。特别是可以描述不同制造机器之间复杂的信息流、协调生产过程的数字过程孪生和生产中卫星的数字孪生。此外,可以通过推理识别冲突和可能的错误来源。利用上述知识库和标准化模块化组件,可以根据所需的任务要求自动规划特定任务卫星的组成。在机器人操纵器的帮助下,使用高分辨率相机和参考图像对每个模块进行光学生产错误检查,然后将其集成到卫星结构中。集成后,子模块将以学习到的标称子系统行为模型作为输入,进行优化测试和异常检测程序。此外,每个操作步骤都使用力反馈和基于视觉的异常检测器进行监督。对于自动组装失败的情况,开发了具有力反馈的双边遥控系统。为了提高遥控组装的精度并减少精神和身体负荷,人类操作员需要借助自适应虚拟固定装置(触觉约束)。自适应夹具从演示和模拟中学习,并根据操作阶段进行参数化,在整个接近、定位和触觉操作阶段提供从粗到细的支持。仲裁组件检测当前操作阶段以选择合适的支撑夹具并确保平稳过渡。关键词:数字孪生、AIT、遥操作、人工智能、机器人制造本文概述了人工智能方法和我们实现可靠、自适应的在轨制造的方法,并介绍了初步结果。
摘要在2019年底,宇航员卢卡·帕尔米塔诺(Luca Parmitano)远程控制了配备了机器人操纵器的漫游者,并在ISS的月球 - 纳尔格网站上执行地质任务。一年零7个月后,在2021年7月,他将在更现实的月球 - 分析环境中控制同一条漫游者:意大利埃特纳山上的火山岩和雷果石领域。这些实验在ESA的Meteron项目框架中构成了模拟1活动。作为有效负载开发人员,我们想创建一个宇航员的接口,以直观地在行星或月球表面上操作机器人系统:我们如何才能最大程度地提高任务效率和沉浸式 /透明度的感觉?同时,我们如何最大程度地减少操作员的疲劳以及身体和精神效果?以及在人类空间的框架中,我们如何执行此操作,并具有质量和软件要求,并具有延迟,低宽带和不可靠的通信?我们展示了如何创建具有直观图形和触觉用户界面的远程动物系统。这包括力量反馈设备和自定义操纵杆,控制一个移动机器人平台。机器人平台由一个全地形底盘和两个带有扭矩传感的7-DOF机器人臂组成。一只手臂安装在漫游车的前部,用于操纵;另一个被安装在顶部,用于重新放置相机。使用该系统,宇航员完全控制了机器人以收集岩石样品。唯一的外部输入是从科学家组成的科学家,而不是语音循环和文字,关于地质样本的选择。通过Sigma.7触觉输入设备提供了操纵臂的全部稳定的6-DOF力反馈。这意味着宇航员可以(第一次从空间开始)不仅与轨道的行星表面接触,而且还可以感觉到它们所抓住的岩石的重量。系统状态反馈是在用户界面上的视觉和直觉上显示的 - 在ISS上的笔记本电脑上运行 - 以及两个摄像机的视图。在开发过程中,我们不断整合来自各种利益相关者的要求,以及宇航员和宇航员培训师的反馈,以改善用户界面。模拟测试提供了有关如何设计远程呈现系统来控制行星表面上从轨道上控制机器人的宝贵见解。我们希望这些见解对于在类似情况下的远程制定行星机器人技术以及陆地应用的未来开发非常有用。关键字:(最大6个关键字)远程操作,机器人技术,低带宽,触觉,实时,延迟