摘要:人们越来越关注纳米力学作为各种病理的标志物的应用。原子力显微镜 (AFM) 是一种可用于量化活细胞纳米力学特性的技术,具有高空间分辨率。因此,AFM 提供了追踪活细胞中细胞骨架重组变化的可能性。两种主要细胞骨架成分(即肌动蛋白丝和微管)的结构、组织和功能受损会导致严重影响,从而导致细胞死亡。这就是为什么这些细胞骨架成分是抗肿瘤治疗的目标。本综述旨在描述有关 AFM 追踪抗肿瘤药物作用引起的活细胞纳米力学特性变化的能力的知识,这些变化可能转化为抗肿瘤药物的功效。
目标设定和记录保存 目标设定是一个持续的过程,可指导您的项目领域学习。拥有目标就像拥有一张路线图,向您展示如何到达您想去的地方。记录保存也是一个持续的过程,也是另一项重要的生活技能。在 4-H,我们鼓励您从各种记录保存格式中进行选择,以满足您自己的个人需求和您喜欢的学习方式。记录您的学习经历有助于您确定自己实现目标的程度。目标设定和记录保存可提高您的组织、沟通、规划和评估技能。
1. 简介 1.1. 材料力学在设计中的作用 1.2. 材料行为和失效模式 2. 材料的弹性和非弹性行为 2.1. 单轴载荷下的线性弹性行为 2.2. 非线性和非弹性行为 2.3. 屈服准则 2.4. 断裂机制 3. 生物系统中材料的力学行为 3.1. 钢材 3.2. 混凝土 3.3. 木材 3.4. 骨骼 3.5. 柔性材料 3.6. 其他材料 4. 梁的弯曲分析 4.1. 梁的适用性 4.2. 梁挠度方程 4.3. 挠度分析方法 5. 柱的稳定性分析 5.1. 结构的稳定性 5.2. 欧拉公式 5.3. 侧向支撑 5.4. 柱设计 6. 结构分析中的能量方法简介(可选) 6.1. 应变能 6.2功能法 6.3. 卡斯蒂利亚诺定理
我想感谢以下人员以各种形式给予我的帮助。Ray Tedman 博士是一位出色的导师,他付出了额外的时间和精力,帮助我成长为一个会走路、会说话的解剖学家。Greg Bain 博士是一位出色的联合导师,他总是说正确的话。你们对这个项目的热情给了我不可估量的帮助。Wesley Fisk 先生为博士生提供了所有可能需要的技术和社会支持。感谢你们所做的一切,希望你们能给予我更多帮助。Stelios Michas 先生(你该有自己的产品线了!)感谢你的帮助和友谊。每当事情看起来行不通时,你总能找到办法让它成功。医学和兽医学研究所的 Rob Moore 博士和他的技术人员 Greg 和 Beverly 对脱钙标本进行了 x 射线检查。妇女儿童医院的 Nick Zabanias 先生负责做所有的 x 射线和 CT 检查。 Aman Sood 博士完成了四角融合手术,并给出了许多很好的建议。医学和兽医学研究所的 Nicola Fazzalari 博士提供了所有建议并允许我使用您的大冰箱!Tavik Morgenstern 先生是一位好伙伴,不时借给我艺术眼光。我保证不会再弄乱您的扫描仪了!Maciej Henneberg 教授和阿德莱德大学解剖科学系的全体工作人员,激励我(有意或无意地)成为最好的解剖学家,让上班感觉不那么像工作。Ian Gibbins 教授看到了别人没有看到的东西,给了我工作,并时不时地问我“可怕的问题”。Don 是一位很棒的好朋友,尽管写这样的东西会让我感到疯狂,但他总是在我身边。妈妈和爸爸从第一天起就给予我所有的支持和建议。最后,但绝非最不重要的一点,感谢 Kara,她是我生命中最重要的人,我珍惜她。这是献给你的。
我想感谢以下人员以各种形式给予我的帮助。Ray Tedman 博士是一位出色的导师,他付出了额外的时间和精力,帮助我成长为一个会走路、会说话的解剖学家。Greg Bain 博士是一位出色的联合导师,他总是说正确的话。你们对这个项目的热情给了我不可估量的帮助。Wesley Fisk 先生为博士生提供了所有可能需要的技术和社会支持。感谢你们所做的一切,希望你们能给予我更多帮助。Stelios Michas 先生(你该有自己的产品线了!)感谢你的帮助和友谊。每当事情看起来行不通时,你总能找到办法让它成功。医学和兽医学研究所的 Rob Moore 博士和他的技术人员 Greg 和 Beverly 对脱钙标本进行了 x 射线检查。妇女儿童医院的 Nick Zabanias 先生负责做所有的 x 射线和 CT 检查。 Aman Sood 博士完成了四角融合手术,并给出了许多很好的建议。医学和兽医学研究所的 Nicola Fazzalari 博士提供了所有建议并允许我使用您的大冰箱!Tavik Morgenstern 先生是一位好伙伴,不时借给我艺术眼光。我保证不会再弄乱您的扫描仪了!Maciej Henneberg 教授和阿德莱德大学解剖科学系的全体工作人员,激励我(有意或无意地)成为最好的解剖学家,让上班感觉不那么像工作。Ian Gibbins 教授看到了别人没有看到的东西,给了我工作,并时不时地问我“可怕的问题”。Don 是一位很棒的好朋友,尽管写这样的东西会让我感到疯狂,但他总是在我身边。妈妈和爸爸从第一天起就给予我所有的支持和建议。最后,但绝非最不重要的一点,感谢 Kara,她是我生命中最重要的人,我珍惜她。这是献给你的。
摘要在纳米材料力学实验室和俄罗斯科学学院机械工程学研究所的纳米材料力学和缺陷理论中对研究活动进行了简要综述。它涵盖了旨在解释和理论描述这些材料机械行为的以下特征:与错位的经典Hall-Petch法律,同质和异构的成核的偏差,晶粒边界滑动,其适应性的机制以及其适应性,旋转变形,旋转变形,变形二,变形的晶粒和范围的机制,以及相互作用的范围和相互作用。讨论了一些最重要且最有趣的结果,并将其与实验研究和计算机模拟的可用数据进行了比较。
•技术会议将在会议中心。海报会议将在Lampedusa房间内。•该计划中列出了进餐和休息时间的位置。•在技术会议期间,严格禁止使用任何设备(例如,相机,手机,笔记本电脑,手表)录制的音频和视频录制,除非作者和ECI事先授予事先许可。•扬声器 - 请在会议开始之前(最好是前一天)将演示文稿加载到会议计算机上。•扬声器 - 请至少留3分钟以获取问题。
欢迎来到中级力学与狭义相对论!本课程旨在让学生通过协作和积极参与讲座和计算/解决问题实验室来学习物理。积极参与和参与对你的成功至关重要,并反映在课程的构建和评估方式中。物理是我们所有人都必须挑战自己并努力学习的东西。每个人都可以通过学习、小组工作和解决问题来学习物理并提高智力。我期待着一起学习物理,并让你们都加入我的团队
摘要 激光粉末床熔化Al-8.3Fe-1.3V-1.8Si合金的工艺参数与组织和力学性能之间的关系研究较少,因此,选取两种参数的全致密合金来研究这一关键问题。结果表明:低功率和扫描速度的合金(S200)呈现扇壳状熔池和激光轨迹,而另一种合金(S350)呈现更深更宽的熔池。两种合金均获得了非均匀微观组织,熔池(MP)中没有第二相,熔池边界(MPB)中有纳米相。MP和MPB中固溶强化和Orowan强化的差异导致压缩屈服强度的差异(S200:380±14 MPa和S350:705±16 MPa),非均匀纳米硬度导致不同的裂纹行为和失效应变。研究表明,调整工艺参数是控制该合金组织和力学性能的有效方法。
我们研究了矩形管道中压力驱动层流磁流体动力学流动的能量稳定性,该管道具有横向均匀磁场和电绝缘壁。对于足够强的场,层流速度分布具有均匀的核心和凸起的哈特曼和谢尔克利夫边界层,这些边界层位于垂直和平行于磁场的壁上。该问题通过横向流坐标中的切比雪夫多项式的双重展开进行离散化。临界雷诺数的线性特征值问题取决于流向波数、哈特曼数和纵横比。我们考虑了小纵横比和大纵横比的极限,以便与基于一维基流的稳定性模型进行比较。对于大纵横比,我们发现数值结果与基于准二维近似的结果具有良好的一致性。升力机制在零流向波数极限中占主导地位,并使管道中的临界雷诺数和哈特曼数呈线性依赖关系。小纵横比的管道结果收敛到 Orr 的原始能量稳定性结果,即对平面泊肃叶基流施加展向均匀扰动。我们还研究了特征模态的不同可能对称性以及管道几何中的纯流体动力学情况。
