事件相关电位(ERP)与功能磁共振成像(fMRI)的结合有助于获得和研究高时间和空间分辨率的神经网络。EEG/fMRI数据证明,在视觉三刺激奇异范式中,由目标刺激和新刺激诱发的两个P300电位(P3a和P3b)均可在额中部(Fz)、中心(Cz)和中部顶端(Pz)电极上检测到。先前的研究表明P3a和P3b具有不同的脑激活空间分布,但它们是否具有相同的神经机制尚不清楚。本研究旨在确定P3a和P3b的神经心理机制,以及两个ERP子成分之间的神经动力学时空差异。在一组25名被试中,由目标刺激和新刺激诱发的P300 ERP均可在Fz、Cz和Pz电极上检测到。在Cz和Fz处,与目标刺激相关的P3b相比,与新刺激相关的P3a幅度更高,波形下降更慢,但在Pz处,P3b幅度大于P3a。在Cz和Fz处P3a出现早于P3b,但在Pz电极上观察到相反的现象。P3a的激活脑区包括左侧额顶叶区、左侧前楔叶区和右侧岛叶,而目标驱动的P3b与双侧梭状回、左额叶区和双侧岛叶的BOLD变化显著相关。结果显示,ERP和fMRI两种成像模式的空间和时间信息的整合证明了两个P300亚成分存在不同的脑功能过程。通过对P300成分的分析,结果进一步证明了自上而下和自下而上的加工过程对注意捕获的发生都发挥了作用,只是两种加工机制在不同任务中的调制效果不同,因此需要注意的是,被捕获的神经机制并不是单一的自上而下或自下而上的加工过程,而应该是两者相互作用的结果。
功能性近红外光谱 (fNIRS) 通过监测血液中氧合血红蛋白 ( O 2 Hb ) 和脱氧血红蛋白 ( HHb ) 的浓度变化,能够无创地测量人类大脑活动。1 – 4 fNIRS 已经从一种基础研究工具发展成为一种广泛用于研究非约束环境中大脑活动的技术。5、6 尽管其用途广泛,但仍存在一些挑战,特别是连续波 fNIRS 对非神经元来源的血流动力学变化的敏感性。 2、7-10 这些通常被称为生理“噪音”或“干扰”,包括全身活动,例如心脏脉动(1 至 2 Hz)、呼吸(0.2 至 0.4 Hz)、低频振荡(约 0.1 Hz)和极低频振荡(0.01 至 0.05 Hz),11 以及通过交感神经活动导致的血流增加。12 这些伪影产生的信号变化可能会模仿或掩盖真实的任务诱发的血流动力学反应(HR),并可能导致假阳性或假阴性。8、10、13 近年来,fNIRS 社区已经承认了这一挑战,并认识到了其重要性。 8 尽管对非神经元信号的敏感性特定于 fNIRS 的测量原理,但所有通过血流动力学变化推断大脑活动的技术,即 fNIRS、功能性磁共振成像和正电子发射断层扫描,都会受到影响。作为低频振荡的主要贡献者,Mayer 波 (MW) 是动脉血压中的节律性血流动力学振荡,14 并且大概是某些受试者无法恢复功能性心率的主要原因。15 当针对特定测量协议和任务/刺激持续时间进行适当选择时,可以使用低通滤波器去除心脏和呼吸信号。16、17 其他系统信号的去除更加困难,并且需要应用更复杂的信号处理,因为它们的频率内容与功能性心率重叠。18 – 20 短通道回归方法已被提出作为将大脑活动与全身活动分离的一种方法。 21 , 22 通过短间隔 (SS) 通道(通常 < 15 毫米,理想长度为 8.4 毫米 23 , 24 )单独测量头皮血流动力学,可获得主要包含全身和最小脑活动的信号。为了从长间隔 (LS) fNIRS 测量(通常为 30 毫米)中提取大脑的贡献,需要从 LS 信号中减去 SS。短通道回归已被证明可以显著提高恢复的功能性脑活动的质量。18 , 21 , 22 , 25
功能性近红外光谱 (fNIRS) 通过监测血液中氧合血红蛋白 ( O 2 Hb ) 和脱氧血红蛋白 ( HHb ) 的浓度变化,能够无创地测量人类大脑活动。1 – 4 fNIRS 已经从一种基础研究工具发展成为一种广泛用于研究非约束环境中大脑活动的技术。5、6 尽管其用途广泛,但仍存在一些挑战,特别是连续波 fNIRS 对非神经元来源的血流动力学变化的敏感性。 2、7-10 这些通常被称为生理“噪音”或“干扰”,包括全身活动,例如心脏脉动(1 至 2 Hz)、呼吸(0.2 至 0.4 Hz)、低频振荡(约 0.1 Hz)和极低频振荡(0.01 至 0.05 Hz),11 以及通过交感神经活动导致的血流增加。12 这些伪影产生的信号变化可能会模仿或掩盖真实的任务诱发的血流动力学反应(HR),并可能导致假阳性或假阴性。8、10、13 近年来,fNIRS 社区已经承认了这一挑战,并认识到了其重要性。 8 尽管对非神经元信号的敏感性特定于 fNIRS 的测量原理,但所有通过血流动力学变化推断大脑活动的技术,即 fNIRS、功能性磁共振成像和正电子发射断层扫描,都会受到影响。作为低频振荡的主要贡献者,Mayer 波 (MW) 是动脉血压中的节律性血流动力学振荡,14 并且大概是某些受试者无法恢复功能性心率的主要原因。15 当针对特定测量协议和任务/刺激持续时间进行适当选择时,可以使用低通滤波器去除心脏和呼吸信号。16、17 其他系统信号的去除更加困难,并且需要应用更复杂的信号处理,因为它们的频率内容与功能性心率重叠。18 – 20 短通道回归方法已被提出作为将大脑活动与全身活动分离的一种方法。 21 , 22 通过短间隔 (SS) 通道(通常 < 15 毫米,理想长度为 8.4 毫米 23 , 24 )单独测量头皮血流动力学,可获得主要包含全身和最小脑活动的信号。为了从长间隔 (LS) fNIRS 测量(通常为 30 毫米)中提取大脑的贡献,需要从 LS 信号中减去 SS。短通道回归已被证明可以显著提高恢复的功能性脑活动的质量。18 , 21 , 22 , 25