纳米尺度对热传输的影响有望在先进半导体架构的散热中发挥重要作用,并提高新型热电材料的效率。热传输测量通常在宏观尺度上进行,并给出多材料结构(包括各种界面和材料)的整体响应。纳米级材料和界面中热传输的原子计算机模拟有助于分析实验,了解尺寸和时间尺度的限制效应,并评估相关的宏观模型。1 到目前为止,通过分子动力学 (MD) 模拟对原子尺度上的热传输进行建模主要遵循两种方法。第一种方法称为平衡 MD,2 基于在给定温度下平衡的系统中热流波动的量化。最终使用 Green-Kubo 或爱因斯坦涨落关系来提取块体材料的热导率。第二种方法称为非平衡 MD 或直接法 3,其基础是在热源和热沉之间建立稳态热流,并从温度梯度的斜率或不连续性中分别提取热体积电导率或界面电导率。在目前的研究中,我们开发了一种不同的方法,称为 AEMD,即“接近平衡” MD。通过划定一个与其他部分温度不同的加热部分,最初将系统设置为非平衡状态。然后监测接近平衡的情况,即两部分之间的温差随时间的变化。可以证明,对于大多数实际关注情况,温度衰减呈指数增长。通常在几十分之一到几百皮秒内达到平衡,因此,与平衡MD中自相关函数的计算和非平衡MD中稳态热流的建立相比,计算成本大大降低。此外,AEMD方法基于平均
从对科学的非常通用的定义开始为“ 1)知识,2)方法和3)认识的方式”(Abell&Lederman 2007),本文提出了一个问题,即在第2和3点上对知识的进化可以说的是什么。我们在这里开发了一种独立于任何特定协议的方法,尽管其应用要求有足够的共识来描述与知识体体合法记录相对应的材料(例如同行评审的论文)。尽管我们将这种知识体的演变称为“科学的演变”,但应清楚地说明,为了避免混乱,本文也不涉及科学方法的演变,也不涉及科学知识的演变。
开发数值方法以在通用量子计算机上有效模拟非线性流体动力学是一项具有挑战性的问题。本文定义了 Madelung 变换的广义,以通过狄拉克方程解决与外部电磁力相互作用的量子相对论带电流体方程。狄拉克方程被离散化为离散时间量子游动,可在通用量子计算机上有效实现。提出了该算法的一种变体,用于在均匀外力的情况下使用当前噪声中间尺度量子 (NISQ) 设备实现模拟。使用该算法对当前 IBM NISQ 上的相对论和非相对论流体动力学冲击进行了高分辨率(高达 N = 2 17 个网格点)数值模拟。本文证明了可以在 NISQ 上模拟流体动力学,并为使用更通用的量子游动和量子自动机模拟其他流体(包括等离子体)打开了大门。
摘要:与基于可分离的复杂希尔伯特空间的“经典”量子力学相比,该论文研究了量子信息后量子不可分性的理解。相应地“可区分性 /无法区分性”和“古典 /量子”的两个反对意义在量子不可区分性的概念中隐含可用,可以解释为两个经典信息的两个“缺失”位,这些信息将在量子信息传递后添加,以恢复初始状态。对量子不可区分性的新理解与古典(Maxwell-Boltzmann)与量子(Fermi-Dirac或Bose-Einstein)统计的区别有关。后者可以推广到波函数类(“空”量子量),并在希尔伯特算术中详尽地表示,因此可以与数学基础相连,更确切地与命题逻辑和设置理论的相互关系相互关联,共享了布尔代数和两种抗发码的结构。关键词:Bose-Einstein统计,Fermi-Dirac统计,Hilbert Arithmetic,Maxwell-Boltzmann统计,Qubit Hilbert Space,量子不可区分性,量子信息保存,Teleportation
了解突触功能和神经回路动力学如何受到调节是神经科学的基石,因为这些过程对于信息传递、记忆形成和对环境变化的适应性反应至关重要。它们提供了对大脑如何处理信息、适应经验和对伤害做出反应的见解,例如通过学习中的突触可塑性、创伤后的神经再生和对环境变化做出反应的自适应电路重塑等机制。这些机制对于理解精神和神经系统疾病的病理生理学也至关重要。虽然已经取得了重大进展,例如高分辨率成像技术的开发和关键分子调节剂的识别,但对突触特性和神经回路在时间和空间维度上的精确调节仍然了解不足。解决这些挑战对于揭示大脑可塑性背后的分子机制和推进神经和精神疾病的新治疗方法至关重要。本研究主题重点关注调节突触功能和神经回路动力学的时空分子机制。它汇集了旨在弥补现有知识空白的各种研究。通过深入研究突触特性的分子基础及其动态变化,该研究主题提供了对突触功能调节和电路可塑性的重要见解,其更广泛的目标是增进我们对大脑可塑性及其对神经系统疾病的影响的理解。
图1:测定实验中电流诱导的力。(a)KERR显微镜图像显示了一个限制在40μm×7μm的带有漏斗类的丝线中的单个Skyrmion(深色斑点)。左侧和右侧的金触点允许沿线施加电流。(b-d)我们的方法的逐步应用为2.14∙106 A/m 2的电流密度。(b)用于施加在左侧(蓝色)和右(红色)的电流的偏置的天空分布。(c)产生的偏置PMF。(d)推断的纯固定能量景观(蓝色)和推断的纯力偏置(红色)。力偏置的中央区域的线性拟合(虚线黑线)的斜率等于天空上的力。(e)电流诱导的力对施加电流密度的强度图。通过将天空轨迹分为三个部分,并使用力偏差斜率的平均值和标准误差来估计数据点的误差。测量已在名义上的两个不同的设备上进行了与数据点颜色所示的同一样品上相同几何形状进行的。这些点进行调整以纠正Skyrmion尺寸的偏差;原始点以灰色给出。交叉表示模拟结果。
摘要:由于它们在控制培养条件下对培养条件的卓越控制并与体内模型相比,由于它们在控制培养条件下的卓越控制并实现了实时观察,因此体外微血管模型的最新出现增强了组织工程中血管生成和血管形成的研究。然而,常规的二维(2D)观察和分析无法捕获三维(3D)形态动力学的异质性。为了克服这个问题,在本文中提出了一种新型的形态登记方法,用于通过将工程微血管的共聚焦显微镜与计算机视觉技术相结合,用于血管生成变形动力学的时空定量。使用微血管和周细胞的共培养系统,时空测量结果揭示了:(i)亲本血管和血管生成芽的不同变形模式以及生长/回归分区; (ii)周期定位和覆盖范围的时空变化; (iii)周细胞微使接触接触对局部缺口信号激活的增强作用,基质金属蛋白酶-1(MMP-1)的分布,血管生成动力学的异质性和形态成熟。该试验系统在血管生成过程中提供了共培养细胞的综合作用的特征,并在未来的有关血管形态发生的研究中实现了多模式数据的互动融合。
图1:超过1000个模拟数据集的纵向和生存数据的后验预测检查(PPC); (a) - (e):在atezolizumab治疗组中,纵向PPC通过病变位置分层,观察到的数据的中值(固体黑线)和淋巴(a),肺(B),肝(C),肝(C),Bladder(d)和其他(E)(E)的淋巴(A),蓝色,绿色,绿色,灰色,红色,红色和黄色的位置的预测间隔为95%。(f) - (j):化学疗法治疗手臂中通过病变位置分层的纵向PPC,随着时间的时间观察到数据的中值(固体黑线)和淋巴(F),肺(G),肝(H),肝(H),膀胱(I)和其他(蓝色(J)的位置(蓝色,绿色,灰色,灰色,红色,红色,红色)的预测间隔为95%。(k):两个治疗组中的生存PPC;化学疗法组(橙色实线)和atezolizumab臂(紫色实线)中观察到的数据中生存概率的Kaplan-Meier估计量和生存概率(有色区域)的预测间隔95%。
摘要:在这项工作中,Ti的直接照射:蓝宝石(100 fs)飞秒激光束在第三次谐波(266 nm)(266 nm),中等重复率(50 Hz和1000 Hz),用于在聚恒定(PS)薄膜上创建正常的周期性纳米结构。在一个斑点区的情况下,获得了50 Hz以及1 kHz的典型低空间频率LIPS(LSFL),并使用线扫描辐照。激光束的功能,重复速率,脉冲数(或辐照时间)和扫描速度,以导致各种周期性纳米结构的形成。发现PS的表面形态在很大的能量(1至20 µ j/pulse)下强烈取决于大量脉冲(10 3至10 7脉冲)的积累。此外,在激光辐照过程中从室温加热至97℃,修饰了纹波的形态,尤其是它们的振幅从12 nm(RT)提高到20 nm。扫描电子显微镜和原子力显微镜用于成像表面结构的形态特征。以选定的速度进行激光梁扫描,可以在聚合物膜上生成良好的纹波,并在大面积上产生均匀性。
Sainbiose单元(SanténierieBiologie Saint-Etienne)结合了Jean Monnet大学,矿山St Etienne,法国血液建立和圣泰恩大学医院的研究人员,重点是骨关注骨关节生物学,软组织机械博物学,血液学和血液学,血液学和血小板。它拥有48位永久研究人员和37名技术人员,分为两支团队,并培训58位博士生。在过去的五年中,它制作了100份年度出版物,提交了6份专利,开发了3种软件工具,并启动了2家初创公司。“软组织生物力学”组由PR领导。S. avril,重点介绍了有关生物组织机械行为及其与医疗设备的相互作用的数值,临床和实验研究。实验室包括实验设备,例如单轴或双轴拉伸机器,光场测量工具和显微镜设备。他们的研究得到了强大的学术网络的支持,无论是在国内还是国际上,他们都会与Thuasne,Sigvaris和Medtronic等公司定期合作。