在海洋工程中,计算流体动力学(CFD)模型对于模拟时间敏感的情况至关重要,例如预测溢油以及在海上进行搜索和救援操作。因此,创建可以有效,准确模拟实时数据的CFD模型至关重要。当前的CFD模型分为两类:慢速且计算上昂贵但准确的细化高保真模型,并且速度快,便宜但通常不准确。为了开发一个平衡计算成本和准确性的模型,我们建议使用稀疏变分高斯工艺进行闭合建模。我们模拟了二维流体流的理想情况,并通过圆柱障碍物越过,并增强了具有三种高保真模型的三种不同离散化的低保真模型。在所有离散化中,我们的增强低保真度模型保留了与高保真模型的高度准确性和相似性,并且与标准的低保真模型相比,误差明显少得多。因此,我们发现高斯过程可以有效地用于闭合流体流量。
滑铁卢大学承认,我们的大部分工作都在中立,阿尼西纳阿比(Anishinaabeg)和Haudenosaunee人民的传统领土上进行。我们的主要校园位于霍尔迪曼德区,授予六个国家的土地,其中包括大河两侧的六英里。我们的积极和解工作是通过研究,学习,教学和社区建设在校园中进行的,并在土著关系办公室内进行了协调。
石墨烯量子点(GQD)据报道,以增强复合特性的纳米填充剂的作用。在复合材料中详细介绍了该纳米纤维的介绍。为了了解游戏中的基本机制,本研究使用分子动力学模拟来揭示GQD对环氧性特性的影响。在三种不同的GQD化学分配上进行了机械模拟,其中包括原始的GQD和2个边缘氨的GQD,具有不同程度的功能化(5.2%和7.6%)。这些GQD分别插入了五个个体重复的聚合物基质中。使用单轴应变模拟计算纳米复合机械性能,以显示嵌入式GQD的效果。©2024作者。由Elsevier Inc.出版这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)
设备的故障安全设计需要稳健的完整性评估程序,这些程序仍缺乏2D材料,因此影响了转移到应用程序。在这里,已经开发了一种组合的片上张力和开裂方法以及相关的数据减少方案,以确定单层单体域 - 弗林氏菌的断裂韧性和强度。无数标本是提供统计数据的。 裂纹逮捕测试提供了明确的断裂韧性,为4.4 MPA效应。 张力在片上张开Young的950 GPA模量,11%的断裂菌株和高达110 GPA的拉伸强度,并通过热力学和量化的骨折机制,达到了储存的弹性能量〜6 GJ M-3的记录。 a〜1.4 nm裂纹大小通常是导致石墨烯故障的原因,连接到5-7对缺陷。 微米大小的石墨烯膜和较小的无缺陷,设计规则可以基于110 GPA强度。 对于较大的区域,故障设计应基于最大57 GPA强度。无数标本是提供统计数据的。裂纹逮捕测试提供了明确的断裂韧性,为4.4 MPA效应。张力在片上张开Young的950 GPA模量,11%的断裂菌株和高达110 GPA的拉伸强度,并通过热力学和量化的骨折机制,达到了储存的弹性能量〜6 GJ M-3的记录。a〜1.4 nm裂纹大小通常是导致石墨烯故障的原因,连接到5-7对缺陷。微米大小的石墨烯膜和较小的无缺陷,设计规则可以基于110 GPA强度。对于较大的区域,故障设计应基于最大57 GPA强度。
抽象目标在怀孕期间的肠道霉菌组(IE,真菌)的重塑及其对宿主代谢和妊娠健康的潜在影响仍然很大程度上尚未探索。在这里,我们的目的是检查孕妇肠道真菌的特征,并揭示肠道菌组合,宿主代谢组和妊娠健康之间的关联。基于中国中部的前瞻性出生队列(2017年至2020年)的设计:Tongji-Huaxi-Shuangliu出生队列,我们包括4800名参与者,他们在怀孕期间提供了ITS2测序数据,饮食信息和临床记录。此外,我们建立了一个由1059名参与者组成的子幼虫,其中包括514名妇女,这些妇女生育着早产,低出生体重或宏观疾病婴儿,以及545个随机选择的对照。在此子体内,共有750、748和709名参与者的参与者分别在所有三个固定器中分别提供了2个测序数据,16S测序数据和血清代谢组数据。结果与肠道细菌中观察到的变化相比,肠道真菌的组成从早期到晚期急剧变化,表现出更大程度的可变性和个性。多组学数据提供了肠道菌组,生物功能,血清代谢产物和妊娠健康中网络的景观,从而指出了粘膜与不良妊娠结局之间的联系。孕前超重状态是影响肠道菌组合体组成改变和妊娠期间代谢重塑模式的关键因素。结论本研究提供了怀孕期间肠道菌果实的动力学的景观及其与宿主代谢和妊娠健康的关系,这奠定了未来肠道肠菌组织健康妊娠调查的基础。
本主论文提出了数值模型的开发和应用,以模拟瑞典各种气候区域中温室的能量平衡。利用MATLAB和IDA ICE构建模拟计划中的气候输入,该模型旨在评估温室中的热传输和温度动态,以模拟能量性能。该研究通过检查模拟在不同位置和不同参数的额外加热和冷却的需求来解决温室培养的高能量需求。该研究通过关注北欧气候中的温室性能来弥合现有研究的差距,从而比较瑞典气候中温室和南欧之间的温室之间的能量性能。由于分析是在一般温室上进行的,因此将来自城市的气候Malméo,Lule˚A和Valencia(西班牙)用作研究的位置进行参考。
代表?。全球J Sci Front Res Phys Space Sci 23:01-03。2。Spiros Koutandos(2024)是否存在磁性单极?材料的最新进展6):005 3。May Zh(2019)B峰的五维空间证明。 物理与天文学杂志7:180。 4。 Vlatko Vedral(2014)量子纠缠。 自然物理ICS 10:256-258。 5。 seyed kazem Mousavi(2023)量子力学现象的时空描述和时间性质的六个二二个月的平衡。 物理学杂志:理论与应用7:95-114。 6。 Paul S Wesson(2019)时空问题的原理:五个维度的宇宙学颗粒和波浪。 世界科学出版公司。 7。 li-li ye,Chen-di Han,Liang Huang,Ying-Cheng Lai(2022)几何形状引起的波函数崩溃。 物理评论A 106:022207。May Zh(2019)B峰的五维空间证明。物理与天文学杂志7:180。4。Vlatko Vedral(2014)量子纠缠。自然物理ICS 10:256-258。5。seyed kazem Mousavi(2023)量子力学现象的时空描述和时间性质的六个二二个月的平衡。物理学杂志:理论与应用7:95-114。6。Paul S Wesson(2019)时空问题的原理:五个维度的宇宙学颗粒和波浪。世界科学出版公司。7。li-li ye,Chen-di Han,Liang Huang,Ying-Cheng Lai(2022)几何形状引起的波函数崩溃。物理评论A 106:022207。
初级运动皮层 (M1) 的潜在动力学模型揭示了运动控制背后的基本神经计算;然而,这种模型往往忽略了感觉反馈的影响,感觉反馈可以不断更新皮层动力学并纠正外部扰动。这表明迫切需要对感觉反馈和内在动力学之间的相互作用进行建模。这种模型还有利于实时解码神经活动的脑机接口 (BCI) 的设计,其中用户学习和熟练控制都需要反馈。在这里,我们研究了皮层动力学的灵活反馈调节,并展示了它对 BCI 任务性能和短期学习的影响。通过在简单的 2D 到达任务(类似于 BCI 光标控制)上使用实时感觉反馈训练循环网络模型,我们展示了如何将以前报告的 M1 活动模式重新解释为由反馈驱动的动力学引起的。接下来,通过在 M1 上游加入自适应控制器,我们做出了一个可测试的预测:除了 M1 内循环连接的可塑性之外,M1 输入的可塑性(包括感官反馈的重新映射)还促进了新 BCI 解码器的短期学习。这种输入驱动的动态结构还决定了适应速度和学习成果,并解释了学习变异性的连续形式。因此,我们的工作强调了对运动控制的输入相关潜在动力学进行建模的必要性,并阐明了学习限制是如何从神经活动的统计特征和底层动态结构中产生的。
开发数值方法以在通用量子计算机上有效模拟非线性流体动力学是一项具有挑战性的问题。在本文中,定义了 Madelung 变换的广义以通过狄拉克方程求解与外部电磁力相互作用的量子相对论带电流体方程。狄拉克方程被离散化为离散时间量子游动 (DTQW),可在通用量子计算机上有效实现。提出了该算法的一种变体,以在均匀外力的情况下使用当前的噪声中间尺度量子 (NISQ) 设备实现模拟。使用该算法在当前 IBM NISQ 上执行相对论和非相对论流体动力学冲击的高分辨率(高达 N = 2 17 个网格点)数值模拟。这项工作表明可以在 NISQ 上模拟流体动力学,并为使用更一般的量子游动和量子自动机模拟其他流体(包括等离子体)打开了大门。