HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
legged Robotics最近已转向基于高级优化的控制方法,例如模型预测控制(MPC),以产生敏捷和节能的运动。通过将控制问题作为优化任务,机器人系统可以解释复杂的机器人动态和操作约束,包括关节限制和执行器功能。但是,高性能操作也需要严格考虑板载电池限制。这项工作提出了一种经验得出的锂离子电池模型,该模型捕获了瞬态电压下垂和时间依赖的内部电池状态,从而更准确地预测了可行的动力传递。此外,定制的高功率电池组旨在满足MIT类人动物的功率需求,强调功率密度,安全性和可维护性。尽管本文中介绍的工作并未将电池模型整合到轨迹优化框架中,但它为未来的研究建立了基础,旨在将电池和机器人动力学在机器人控制中逐渐发展。最终,这种方法将通过确保计划的轨迹尊重物理和电化学约束来促进更安全,更有能力的腿部机器人。
Vishay Siliconix Vishay Electronic GmbH Vishay Intertechnology Asia Pte. Ltd 2585 Junction Avenue, Dr.-Felix-Zandman-Platz 1, 37A Tampines Street 92, #07-01, - - - 美国加利福尼亚州圣何塞 95134 德国塞尔布 D-95100 新加坡,新加坡 528886 电话:+1-408-988-8000 电话:+49-9287-71-0 电话:+65-6788-6668 传真:+1-408-567-8942 传真:+49-9287-70435 传真:+65-6788-0988 - - -
Storage Interface CPU: - 1 x M.2 connector (Socket 3, M key, type 25110/22110/2580/2280 PCIe 5.0 x4/x2 SSD support) (M2A_CPU) Chipset: - 1 x M.2 connector (Socket 3, M key, type 25110/22110/2580/2280 PCIe 4.0 x4/x2 SSD支持)(M2P_SB)-4 X SATA 6GB/s连接器突袭0,RAID 1,RAID 5和RAID 10对SATA存储设备USB芯片组的支持:-1 x USB Type -C®端口上的sata Storage设备,后面板上的USB 3.2 Gen 2x2支持-1 x USB type -type -type -type -type -type -type -usb 3.2 Gen 1 USB 3.2 type -usb 3.2 type -usb -usb -3.2 (红色)背面面板上-2 x USB 3.2 Gen 1端口,可通过内部USB标头提供-4 x USB 2.0/1.1后面面板芯片组+USB 2.0中心:-4 x USB 2.0/1.1端口,可通过内部USB内部连接器内部连接器
ERTICAL -外腔面发射激光器 (VECSEL) 因其能够在很宽的波长范围内产生高功率高亮度发射而备受关注 [1]。半导体增益的固有波长多功能性与开放式谐振腔相结合,可以实现从紫外到中红外的基波和频率转换发射 [2]。然而,VECSEL 的技术发展并未均匀分布在所有波长区域,导致某些光谱窗口的覆盖效果不佳。700-800 nm 范围就是一个例子,它最近因在生物光子学 [3]、医学 [4] 和光谱学 [5] 中的应用而引起了人们的关注。此外,该波长范围的频率倍增为紫外发射开辟了新的途径,原子分子和光学物理学可以从窄线宽可调谐激光器中受益,可用于原子冷却和同位素分离 [6]。
通过功率循环测试对使用改进的互连技术的最新标准双功率模块进行老化调查 Yi Zhang a,* 、Rui Wu b 、F. Iannuzzo a 、Huai Wang aa AAU Energy,奥尔堡大学,丹麦奥尔堡 b Vestas Wind Systems A/S,丹麦奥胡斯 摘要 为硅和碳化硅设备开发了最新标准“新型双”功率模块,以满足高可靠性和高温电力电子应用日益增长的需求。由于新封装刚刚开始投放市场,其可靠性性能尚未得到充分研究。本文研究了基于新封装的 1.7 kV/1.8 kA IGBT 功率模块的功率循环能力。对功率循环前后的电气和热性能都进行了研究。在 Δ T j = 100 K 和 T jmax = 150 ° C 的条件下经过 120 万次循环后,芯片和键合线均没有明显的性能下降。尽管如此,在测试环境中,在约 600 k 次循环后,已达到导通电压 (V ce ) 增加的寿命终止标准。进一步的扫描声学显微镜测试发现,疲劳位置从传统的近芯片互连(例如,键合线剥离)转移到直接键合铜 (DBC) 基板和底板层。考虑到新封装的循环寿命是传统功率模块的十倍以上,预计随着互连技术的进一步改进,热机械疲劳将不再是限制寿命的机制。同时,随着先前的瓶颈(例如,键合线)得到解决,一些新的疲劳机制(例如,DBC 的分层)在新封装中变得明显。
Bikash Sah博士收到了B.Tech。2014年,印度印度阿鲁纳恰尔邦(Arunachal Pradesh)的美国国家理工学院电气和电子工程学士学位,以及印度印度古瓦哈蒂(Guwahati)印度印度科技研究所的电子和电气工程博士学位,2021年。他目前是德国Sankt Augustin的Bonn-Rhein-Sieg Applied Sciences of Bonn-Rhein-Sieg University,用于电子动力和电化学系统的集体负责电力电子产品。他还与德国卡塞尔的弗劳恩霍夫能源经济学和能源系统技术IEE IEE合作。他已经从事工业,学术界和研究实验室的项目已经工作了十多年,这些项目涉及电力电子和电化学系统,着重于电动性,电池,电解和燃料电池系统。他目前的研究兴趣包括
邀请申请参加2025 - 26年的访问同学在Sardar Swaran Singh国家生物能源研究所(SSS Nibe),Kapurthala,Punjab,旁遮普邦,印度政府的新型和可再生能源部(MNRE)的自治机构,印度政府。该研究所是一家即将进行的研发研究所,其任务是进行最先进的研发和创新,涵盖了整个生物能源范围,从而导致技术商业化及其与其他可再生能源技术的整合。有关更多详细信息,请访问:https://www.nibe.res.in/访问同伴计划 - 称为“ SSS nibe访问同胞”,为促进研究能力和/或提供了与即时需要的SSS NIBE科学家的专业科学/技术指导的简短访问的机会。奖学金范围(2025-26年):