HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要 — 随着通过仅产生有功功率的逆变器连接的分布式发电大规模集成,无功功率补偿对于功率因数 (PF) 校正的重要性将显著增加。在这项工作中,我们专注于共同优化储能以进行能源套利以及局部功率因数校正。联合优化问题是非凸的,但可以使用 McCormick 松弛和基于惩罚的方案有效地解决。通过对真实数据和实际存储配置文件进行数值模拟,我们表明储能可以在不降低套利利润的情况下局部校正 PF。观察到有功功率和无功功率控制在本质上在很大程度上是解耦的,用于执行套利和 PF 校正 (PFC)。此外,我们考虑实时实现具有不确定负载、可再生和定价配置文件的问题。我们开发了一种基于模型预测控制的存储控制策略,使用自回归预测来应对不确定性。我们观察到 PFC 主要受转换器大小控制,因此在线设置中的时间前瞻不会对 PFC 产生明显影响。然而,与缓慢上升的电池相比,上升速度更快的电池的套利利润对不确定性更为敏感。
印度海得拉巴 摘要:集成功率因数校正的 LLC 谐振转换器在 AC-DC 转换器中越来越常见。然而,单相设置在变化的线路和负载条件下有效控制直流总线电容器电压时经常面临挑战。本研究中的新方法引入了一种独特的单相 AC-DC LLC 结构,该结构利用多级拓扑来管理此问题,从而减少了开关设备的数量。创新的三级逆变器设计确保零电压切换,从而降低循环电流、开关电压、纹波含量和损耗。通过无桥整流器系统的变压器进一步优化效率,同时通过采用源侧绕组进行不连续电流控制来实现功率因数校正,几乎实现了单位功率因数。通过实施可变开关频率控制来调节转换器输出电压并利用脉冲宽度调制来控制多级波形,该系统有效地将直流总线电压保持在各种线路和负载波动的窄范围内。索引术语 - LLC 谐振转换器、AC-DC 转换器、软开关、PFC、DC 总线。
开关,并显著降低高压 IC 的寄生电容[10–15]。在过去十年中,大量研究已经检验了 SOI 上的 LDMOSFET,其特性和功率品质因数 (PFOM) 得到了增强[8、9、16–19]。实现高 V BR 是 LDMOSFET 的主要挑战
吉安甘加理工学院 (1)、奇特卡拉大学工程技术学院 (2)、应用科学私立大学 (3)、乌拉尔联邦大学 (4)、塔吉克斯坦技术大学(以 MS Osimi 院士命名)(5) ORCID:1. 0000-0002-5157-2485;2. 0000-0001-9822-8246;3. 0000-0003-1028-2729;4. 0000-0001-7493-172X;5. 0000-0003-3433-9742;6. 0000-0002-9869-288X; doi:10.15199/48.2024.10.12 能源部门通过微控制器自动进行功率因数校正 摘要。目前,能源部门对每个人来说都越来越重要,包括消费、生产、分配和监控。因此,本研究主要关注通过全自动方式提高功率因数。本文介绍了一种基于物联网 (IoT) 的系统。该系统完全自动化,可提高功率因数,还可监控能源消耗,从而准确计算要显示的所有参数数据,例如功率、电流、功率因数消耗等。可以通过带有 Web 服务器的 IoT Blink 平台通过无线技术访问和获取参数数据。通过控制器单元测量和监控参数数据,通过继电器计算并传输到电容器组,以补偿该系统中的滞后功率因数。最后显示功率因数校正的结果,可以更有效地监控功率损耗和能源消耗。Streszczenie。 Obecnie sektor Energyczny 开玩笑 dla wszystkich ze względu na zużycie, produkcję, Dystrybucję i 监控。 Dlatego też niniejsze badanie koncentruje się głównie na poprawie współczynnika mocy poprzez pełną automatyzację. Wartykule przedstawiono 系统oparty na Internecie Rzeczy (IoT)。系统十项与自动自动化、流行性配置、能源监控、能源参数调整、参数设置、维护、保养współczynnika mocy itp。 Dostęp do danych parametrycznych i ich uzyskanie można uzyskać za pośrednictwem bezprzewodowego technologia Poprzez platformę IoT Blink z Serwerem WWW.参数化和参数化监控是红色网络中最重要的参数,它可以隐藏和隐藏所有相关的参数,并可在任何情况下使用。 w tym 系统。如果您想了解更多有关能源的信息,请参阅我们的信息。 ( Automatyczna korekcja współczynnika mocy za pomocą mikrokontrolera w sektorze energetyczn ym) 关键词:能源、功率因数、物联网、控制器、电容器组。功能:能源、电源、互联网连接、控制器、电池连接器。简介 如今,能源部门以消费、生产、分配和监测为基础,这与直接或间接功率因数有关。功率因数是电力供应系统的重要分析,根据能源部门的所有观点,这更为重要 [1]。并且还确定了电源利用中的所有类型的损耗,例如功率因数和损耗成反比,如果功率因数低,则损耗不断增加,功率因数高,则损耗不断改善。因此,现代工业完全关注这一因素,并使用与无功功率相关的不同类型的技术和用途来提高功率因数。功耗可以通过接近 1 的功率因数来定义,并且保持并联电容器组的帮助以实现功率因数校正 (PFC) 是一种非常成熟的方法 [2]。最近,能源领域的研究主要集中在自动切换方法上,这在实时应用中更为重要。例如使用基于 MCU 嵌入式系统 [3],物联网嵌入式提供所有类型的校正监控,并控制所有类型的切换和监控 [4]。这种概念在现代工业中使用,并根据功率因数获得更多控制,从而提高电气系统的效率。低功率因数会造成大量损耗,这些损耗会缩短能源部门设备的使用寿命 [5]。因此,功率因数值应始终保持在 0 到 1 之间。功率因数接近 0.95 的值对任何电力系统来说都是不错的。因此,根据电力标准 [2-9],上述功率因数的改善在电力系统中更为重要。提高电力系统的整体效率。低功率因数会造成大量损耗,这些损耗会缩短能源部门设备的使用寿命 [5]。因此,功率因数值应始终保持在 0 到 1 之间。功率因数接近 0.95 的值对任何电力系统来说都是好的。因此,根据电力标准 [2-9],上述功率因数的提高在电力系统中更为重要。提高电力系统的整体效率。低功率因数会造成大量损耗,这些损耗会缩短能源部门设备的使用寿命 [5]。因此,功率因数值应始终保持在 0 到 1 之间。功率因数接近 0.95 的值对任何电力系统来说都是好的。因此,根据电力标准 [2-9],上述功率因数的提高在电力系统中更为重要。
SPV 端的谐波和电压调节利用太阳能发电的热潮已经取代了很大一部分传统发电方式,同时,具有大量无功分量的负载实际上会降低系统的功率因数。随着太阳能光伏电站 (SPV) 的普及,功率因数、功率因数校正、无功功率要求和谐波对于消费者和公用事业都变得非常重要。众所周知,电网中的容性负载会导致功率因数超前和过压,而感性负载会导致功率因数滞后和欠压。系统的低功率因数会给电网带来很高的输电负担(和损耗),因此,大多数监管机构都规定允许公用事业公司向大宗消费者收取低功率因数的罚款。传统 SPV 系统以单位功率因数运行,而不考虑公用事业网络的无功功率需求。实际上,这种光伏系统连接到电网时,会降低负载端的功率因数,因为有功功率的一部分是通过 SPV 满足的(其中 SPV 容量小于消费者端的负载),然后电网提供平衡有功功率,但保持相同数量的无功功率给连接的负载。这可以通过以下简单示例来解释:示例:- 图 1 中的前提是消耗 1000kW 的有功功率和 450KVAr 的无功功率,导致功率因数为 0.912(滞后)和标称较低的系统电压。如果该场所安装了一个 500kW SPV 系统,该系统以单位功率因数输出电力,则只有从电网输入的有功功率会减少(以(SPV)发电的程度为准)。从电网吸收的无功功率将保持不变。如果 SPV 电厂发电 500 kW,则从电网吸收的无功功率将为 500kW 和 450kVAR。实际上,电网功率的功率因数将滞后 0.743。因此,负载端的电压将进一步下降。图 1
近几十年来,随着微电子技术和计算机技术的进步,矩阵变换器 (MC) 越来越受到研究人员的关注,因为与传统的 AC-DC-AC(背对背)变换器相比,它具有诸多优势,例如:体积小、双向功率流、功率调节能力强、单位功率因数运行、不需要直流母线电容器 [1-5]。文献中通常使用文图里尼和空间矢量调制 (SVM) 方法来解决 MC 控制问题。文图里尼方法的谐波率较低。然而,降低开关损耗是 SVM 方法的主要优势 [6-8]。在 MC 的输入端使用无源滤波器对于避免电流谐波注入电网是必要的。在这种情况下,需要提出几种类型的输入滤波器来解决
摘要:本文介绍了交流现代电表的设计和构造。该电表旨在克服由于手动读数而产生的误差,并最大限度地减少设备的空间消耗。该电表便携且适应性强,因为它可以测量一个单位的电压、电流、频率、功率、能量、功率因数。交流现代电表有几个优点,包括测量住宅用电量、工厂用电量、实验室测量电压、电流、功率、能量、功率因数和频率。需要单独的电表来估计电气参数,但交流现代电表可以测量电压、电流、功率、能量、功率因数、频率并同时在 LCD 上显示它们。设计的交流现代电表使用 Arduino-UNO 和 PZEM-004T 计算电气参数,并同时在数字编程屏幕上显示数值。交流现代电表为电气设备提供准确而有效的读数,也用于电路开发和测试实验室的安全目的。万用表可以测量电压、电流、频率,但不能同时显示所有这些,而交流现代电表在测量和监控电压、电流、功率、电能、功率因数和频率方面具有很大的优势。